0S-9® for 68K
Processors OEM
Installation Manual

Version 3.0

M MICROWARE"

Intelligent Products For A Smarter World

/5//& MICROWARE"

Copyright and Publication Information

Copyright ©1993-1999 Microware Systems Corporation. All Rights Reserved.
Reproduction of this document, in part or whole, by any means, electrical, mechanical,
magnetic, optical, chemical, manual, or otherwise is prohibited, without written permission
from Microware Systems Corporation.

This manual reflects version 3.0 of OS-9 for 68K Processors.

Revision: B
Publication date: August 1999
Disclaimer

The information contained herein is believed to be accurate as of the date of publication.
However, Microware will not be liable for any damages including indirect or consequential,
from use of the OS-9 operating system, Microware-provided software, or reliance on the
accuracy of this documentation. The information contained herein is subject to change
without notice.

Reproduction Notice

The software described in this document is intended to be used on a single computer
system. Microware expressly prohibits any reproduction of the software on tape, disk, or
any other medium except for backup purposes. Distribution of this software, in part or
whole, to any other party or on any other system may constitute copyright infringements
and misappropriation of trade secrets and confidential processes which are the property of
Microware and/or other parties. Unauthorized distribution of software may cause damages
far in excess of the value of the copies involved.

For additional copies of this software/documentation, or if you have questions concerning
the above notice, please contact your OS-9 supplier.

Trademarks

0S-9, 0S-9000, DAVID, and MAUI are registered trademarks of Microware Systems
Corporation. SoftStax, FasTrak, UpLink, and Hawk are trademarks of Microware Systems
Corporation. All other product names referenced herein are either trademarks or
registered trademarks of their respective owners.

Address

Microware Systems Corporation
1500 N.W. 118th Street

Des Moines, lowa 50325
515-223-8000

Chapter 1: Getting Started 9

10 Developing a Plan
10 The Host System Hardware
12 The Host System Software
12 The Target System Hardware
13 Pre-Porting Steps
15 The Make Utility
16 Common File Name Suffixes
18 Checking the Contents of the Distribution
19 Structure of the Distribution Package on the Host System
23 0S-9 Macro Routines
32 Additional Reference Materials
Chapter 2: Porting OS-9 for 68K 35
36 Getting Started
37 Understanding the OS-9 for 68K Booting Process
38 Step 1: Power Up the ROMbug Prompt
40 Step 2: ROMbug Prompt to Kernel Entry
41 Step 3: Kernel Entry Point to $ Prompt
43 The Four Porting Steps
Chapter 3: Step One: Porting the Boot Code 47
48 Introduction
48 About the Boot Code
49 How to Begin the Port: The Boot Code
50 Testing the Boot Code
50 ROM Image Versions
51 Component Files of the ROM Image
55 The Defsfile File
56 The Oskdefs.d File
57 The Systype.d File
58 The ROM Configuration Values

58
61
64
65
66
69
70
70
75
76
77
78
79
80
94
94
95
95
97
98
99

/R

Target Specific Labels
Target Configuration Labels
Low Level Device Configuration Labels
Target System Memory Labels
Example Memory Definitions
The Vectors.a File
The Boot.a File
Steps Boot.a Goes Through to Boot the Kernel
Memory Search Explanations
The RAM Search
The Special Memory Search
The Patch Locations
The ioxxx and ioyyy Files
I/O Driver Entry Points
The Sysinit.a File
The Sysinit Entry Point
The SInitTwo Entry Point
The UseDebug Entry Point
The Syscon.c File
The ilnitext.a File
Putting the ROM Together

Chapter 4: Step Two: Bringing Up the Kernel and Console I/O

MICROWARE"

101

102
104
106
108
109
111
112
114
115
116

Preparing the First Stage OS-9 Configuration
Creating the Init Module
SCF Device Descriptor Macro Definitions
Creating a Console I/O Driver
Preparing the Download File
Downloading and Running the System
Downloading and Running the System
Cold Part of Kernel
The coldstart() Routine

Cold2(): Bringing Up the System the Rest of the Way

119

Debugging Hints

Chapter 5: Step Three: Creating Customized 1/O Drivers and Finishing the

Boot Code

121

122
123
124
125
126
126
127
128
129
131
132
133
134
136
137
139
141
142
143

Guidelines for Selecting a Tick Interrupt Device
0OS-9 Tick Timer Setup
Tick Timer Activation
Real-Time Clock Device Support
Microware Generic Clock Modules
Tickgeneric Support
Ticker Support
Real-Time Clock Support
Using Generic Clock Modules
Philosophy of Generic Clock Modules
Automatic System Clock Startup
Debugging Clock Modules on a Disk-Based System
Debugging Clock Modules on a ROM-Based System
Creating Disk Drivers
Testing the Disk Driver
Creating and Testing the Disk Boot Routines
Testing the CBoot Disk Boot Module
Further Considerations
Completing the System

Chapter 6: Step Four: Testing and Validation

145

146
147
148
149
150
151
152

General Comments Regarding Testing
Kernel Tests

Serial 1/0 (SCF) Tests

Disk 1/0 (RBF) Tests

Clock Tests

Final Tests

System Configuration Checkout

153

A Final Note

Chapter 7: Miscellaneous Application Concerns

ﬁﬂ MICROWARE"

155

156
156
159
160
160
162

Disk Booting Considerations

Boot Drivers Supporting Variable Sector Size

Bootstrap File Specifications

Making Boot Files

Bootstrap Driver Support
Soft Bus Errors Under OS-9

Chapter 8: 0OS-9 Cache Control

163

164
165
165
167
169
172
173
175
176
177
178
179
179
181

0S-9 Cache Control
System Implementation
Install Cache Operations
Default SysCache Modules
Caching Tables
Custom Configuration for External Caches
M$Compat2 Bit Fields
ROM Debugger and Caches
Peripheral Access Timing Violations
Timing Loops
Building Instructions in the Data Space
Data Caching and DMA
Indication of Cache Coherency
Address Translation and DMA Transfers

Chapter 9: RBF Variable Sector Support

183

184
186
188
189
190

RBF Device Drivers

Converting Existing Drivers to Use Variable Sector Size

RBF Media Conversion
Benefits of Non-256 Byte Logical Sectors
Bootstrap Drivers

192

RBF Disk Utilities

Appendix A: The CBoot Technology 193

194
195
199
203

Introduction

The CBOOT Common Booters
CBOQT Driver Entry Points
CBOOT Library Entry Points

Appendix B: Trouble Shooting 233

234
235
237
239

241

244

Introduction

Step 1: Porting the Boot Code

Step 2: Porting the OS-9 for 68K Kernel and Basic 1/0
Coldstart Errors for the Atomic Versions of the Kernel and
IOMan

Setting Up the DevCon Descriptor Field for the Sc68681 Serial

Driver

Searching the Module Directory

Appendix C: Low-level Driver Flags 247

248
249
250
251
252
253
255
256

Flags for io2661.a

Flags for i06850.a

Flags for i068560.a
Flags for i068562.a
Flags for io68564.a
Flags for io68681.a
Flags for io68901.a
Flags for i0z8530.a

Appendix D: SCSI-System Notes 257

258
258

0S-9 for 68K SCSI-System Drivers
Hardware Configuration

ﬁﬂ MICROWARE"

Appendix E: Using the OS-9 for 68K System Security Module

265

266
267
267
268
272
272
273
273
275
277
281
283
283

Memory Management Units
Hardware/Software Requirements
Versions of SSM040
Configuring SSM for MC68451 Systems
Adding SSM to the OS-9 Bootfile
Step One: Create a New Init Module
Step Two: Create a New Bootfile
Step Three: Test SSM Operation
Creating a System Security Module
SSM Module Structure
Hardware Considerations
Complete Source Listing
Customized 68020 protection module

Appendix F: Example ROM Source and Makefiles

295

296
297
300
301
303
305
307
309
311
313
315

Index

defsfile

systype.d
sysinit.a
syscon.c
rombug.make
rom.make
rom_common.make
rom_serial.make
rom_port.make
rom_image.make
bootio.c

319

Product Discrepancy Report

331

Chapter 1: Getting Started

This chapter includes the following topics:

* Developing a Plan

* The Make Utility

« Common File Name Suffixes

* Checking the Contents of the Distribution

o Structure of the Distribution Package on the Host System
* 0S-9 Macro Routines

 Additional Reference Materials

Aﬂ MICROWARE"

/\://& MICROWARE"
Developing a Plan

You have chosen OS-9 for 68K, the world’s leading real-time operating
system for Motorola 68000-based real-time and embedded systems.
Now we hope you find it easy to actually port OS-9 to your new target
system. But to do that, it is important you take a little time to develop a
plan for accomplishing this.

If you have not already realized it, you need to determine what your
development environment will be. This includes such things as:

* What kind of host development system you use to edit and
re-compile OS-9 source files.

* What additional development equipment is needed to test your port
of OS-9 on your target and how this equipment is connected to your
host development system. This is closely tied to the mode of
operation you use to port the OS-9 Boot ROMs to your target.

We strongly suggest you read through at least the first three chapters of
this manual before attempting to start the port. This should give you a
good perspective on what is required to accomplish the port, and
should help you develop a better plan.

Before installing OS-9 for 68K, you need to understand two terms:

host system The development system used to edit
and re-assemble OS-9 source files.

target system The system on which you intend to port
0S-9.

The Host System Hardware

The host system can be any of the following:

* A 68000 family-based computer with at least 2MB RAM and OS-9
for 68K

* Any 286 PC (or greater) running DOS

i Note

The installation procedure may vary at times according to the type of
development system being used. This is noted when important.

You also need the following on the host system:

A hard disk. The directory structure of the files supplied in the
distribution package assume the host system has a hard disk. This
is for storage capacity, not speed. If you use floppy disks, you must
rearrange and edit many of the source files and make files.
Microware does not guarantee OS-9 can be rebuilt on a host system
with only floppy disks.

Extra RS-232 serial ports for communicating with the target system,
PROM programmer, and any PROM or microprocessor emulation
systems you choose to use.

A PROM programmer that can accept data from the host system
because you have to make one or more PROMs. Many commercial
PROM programmers and emulators, interfacing through RS-232
serial links, accept programming data in the form of Motorola
standard S-records. S-records are simply binary data, usually object
programs, converted to ASCII hex characters in a standardized
format.

i Note

The Microware-provided software (the bi nex and exbi n utilities) can
convert data to S-record format if necessary.

A 68000 emulation system (optional). If possible, the emulator
should have at least 128K overlay memory. The emulator provides
handy real-time debugging facilities, and the overlay memory is a
convenient substitute for making ROMs during the testing process.

/5//& MICROWARE"

PROM emulators (optional). This type of device is most useful with a
target known to be functional and an existing resident debugger that
does not have downloading capability or when no debugger exists
and no emulation system is available.

The Host System Software

The OS-9 Developer’s Kit is a source release for Original Equipment
Manufacturers (OEMSs) designed to be installed on a host system. Use
of the OS-9 Developer’s Kit requires a separately available toolkit
designed for the host system. The types of toolkits available are:

* Hawk for Windows 95/NT
* Aresident toolkit for OS-9 systems

Each of the above toolkits includes the Ultra C compiler, assembler and
linker, and all utilities necessary to rebuild OS-9.

The Target System Hardware

The target system should consist of the following hardware:
* A 68000 family CPU.
* Atleast 128K RAM; 512K is recommended.

» Atleast 64K ROM capacity or an emulator with 64K of overlay
memory; however, 128K is required if you plan to use ROMbug. The
64K ROM is for convenience in bringing up OS-9. If the system is
disk-based, the eventual target system can use as little as 32K for a
boot ROM.

» Two serial I/0 ports; one for a terminal and one for communications
with the host system. These are only required for the porting
process.

* Any other I/0O devices OS-9 must eventually support (optional).
These are not used in the initial installation steps.

An existing debugger on a functional target can be used in lieu of an
emulation system for debugging the OS-9 boot ROMs until ROMbug is
functional enough to be used. In this type of configuration, the OS-9
boot ROM image can be built to run from RAM. However, some
mechanism must exist to get the image into RAM, either by
downloading through a serial port (using the existing debugger) or by
accessing memory from another processor in the same system (a
master CPU in a VMEbus system, for example).

Pre-Porting Steps

Before you port OS-9 for 68K:

* Make sure the hardware works. It is difficult to simultaneously debug
the hardware and the software. If the target system is an untested
prototype, use the assembler to make a simple stand-alone test
ROM that just prints a message on a terminal to verify basic
hardware functionality. Using emulators and logic analyzers aids in
simulation of hardware and software.

i Note

The time invested in writing basic diagnostic software that fully
exercises memory, 1/0O devices, and interrupts is often well worth it.

* Hook up the serial ports that link the host to the target system, and,
if possible, test the communications link using existing software that
already runs on your host system.

/5//& MICROWARE"

The following is a typical host and target interconnection:

Figure 1-1 Typical Host and Target Interconnection

RS-232 >l Target
System
Host CRT/
System Workstation
RS-232 PROM
> Programmer

RS-232
CRT
A
Optional
RS-232

Note

Use 9600 baud or the highest possible data rate for RS-232 links to
maximize download speed. The default is 9600 baud.

If you are porting to a slow processor (for example, 68000 8 MHz), you
may have to lower the baud rate in order for the processor to keep up

with the transfer.

The X-On/X-Off protocol is used for flow control.

The Make Utility

While you are porting OS-9 for 68K to the target system, you use the
make utility extensively. The OS-9 make utility uses makefiles to
re-assemble and link many major parts of OS-9. Makefiles simplify
software creation and maintenance.

We strongly recommend you use and maintain the makefiles as you
port OS-9. The makefiles for each major subsystem are located in the
subsystem’s highest level directory and are usually named nakefi | e.

For More Information

Familiarize yourself with the description of the nake utility provided in
Using OS-9 for 68K Processors if you are using an OS-9 based host
system.

Knowing how the makefiles work is a key to understanding a port. In
order for the port to fit into your particular hardware configuration, use
flags to conditionalize the code that is assembled/compiled. These flags
are fully explained later in this manual. Customize these makefiles to fit
your hardware configuration.

/\://& MICROWARE"
Common File Name Suffixes

Microware uses the following file name suffixes to identify file types:

Table 1-1 File Name Suffixes

Suffix Definition

.a Assembly language source code.

. C C language source code.

.d Definitions (def s) source code (for assembly).
.h C header file source code.

.i Microware intermediate code (I-code) files.

i Microware intermediate code libraries.

.I Library files.

. m Macro files.

.0 Assembly language source from the compiler backend.

T Relocatable object code (for linker input), created by the
assembler.

none Object (binary) files.

i Note

In general, OS-9 for 68K does not require file name suffixes. However,
certain utilities, such as WPMACS and cc, do require file name suffixes to
determine the mode of operation.

/\://& MICROWARE"
Checking the Contents of the Distribution

You should become familiar with the contents of the distribution
package provided by Microware. Verify it is:

 Complete
* The correct version for your host system

The distribution software consists of a set of OS-9 diskettes, discs, or
tape cartridges. Refer to the MWOS directory structure described in this
chapter for the organization of the shipping/development directory
structure.

Structure of the Distribution Package on the
Host System

The distribution package contains a large number of files comprising the
operating system and its utilities. A few files are source code text files.
Most others are object code files. The files are organized into
subdirectories according to major subsystems (ROM | O, CMVDS, and so
forth).

A master directory called MAOS is created. The entire distribution
package file system should be copied intact into this directory structure.
We have assumed you use a hard disk based system with sufficient
storage capacity to contain the entire file system.

Microware has adopted this general directory structure across all of its
product lines. This allows all source products to reside together in a
single directory and provides a means for sharing code across all
operating system products.

i Note

The files in the distribution package assume this specific file and
directory organization. They can not assemble and link correctly if the
organization is not correct.

/5//& MICROWARE"

MWOS/OS9/SRC Directory Structure
Taking a closer look at MAOS/ OS9/ SRC we see:

Figure 1-2 MWOS/OS9/SRC Directory Structure

O N—
0s9

SRC

DEFS

| 10 MACROS ROM SYS SYSMODSI

These directories are as follows:

Table 1-2 MWOS/OS9/SRC Directories

Directory

Contains

DEFS

| OVAN

KERNEL

LI B

Files of definitions that apply system-wide, or are target
independent. These are both assembler. d and C . h
include files.

Sources for all /0 subsystems including file-managers,
drivers, and descriptors. The file’s subdirectories are
organized by subsystem (detailed below).

Source for the IOMan module (if you purchased a
license for IOMan source), whose functionality was
integral to the kernel in previous releases.

Source for all kernel variants (if you purchased a
license for kernel source).

Sources for all system and subsystem libraries.

Table 1-2 MWOS/OS9/SRC Directories (continued)

Directory Contains

MACROS Files of assembly language macro definitions that apply
system-wide or are target independent.

ROM Sources for rebuilding all boot ROM components,
except for a few that share source with SCSI drivers in
0.

SYS A repository for files and scripts that would end up

residing in the OS-9 SYS directory on a root device.

SYSMODS Sources for system extension modules.

MWOS/OS9 Directory Structure

The top-most directory structure is as follows:

Figure 1-3 MWOS/OS9 Directory Structure

) S
MWOS

68000 68020 CPU32 MAKETEMH SRC

/5//& MICROWARE"

These directories are as follows:

Table 1-3 MWOS/OS9 Directories

Directory

Contains

SRC

MAKETMPL

68000,
68020,
and CPU32

The source files for the OS-9 drivers, descriptors,
system modules, defs, and macros. It is intended to be
a source directory containing hardware-specific code
written to be reuseable from target to target. It is not
intended to be the repository for final object modules
built from this source, although intermediate object files
may be found within its subdirectories.

A directory for common makefile templates (include
files for makefiles). In this release, any templates found
in this directory apply only to makefiles for ISP and
related products.

These remaining directories can be thought of as object
directories for target processor architectures or families.
Itis in these directories that processor-family-specific
objects are deposited when built, and where
target-specific source code, makefiles, and final objects
reside.

0S-9 Macro Routines

The macros in the SRC/ MACROS directory are designed to be useful,
general purpose macros for driver/file, manager/kernel development.
Do not place macros pertaining to specific drivers, for example, in this
directory.

i Note

Do not edit these macros. Many varied source files use these macros,
and your changes may have unforeseen consequences to other users.

The following list summarizes each macro’s purpose. If you add any
macros to this directory, please update this list accordingly.

Table 1-4 OS-9 Macros

Name Description

btf.m Create branch if true/false instruction sequences, for
situations where Scc instructions are used to
manipulate flags.

os9svc. m Make a system call quickly in a driver or file manager.
This is generally useful only for system calls that do
not return parameters (such as F$Sl eep [0] and
F$Send). This call heavily relies on intimate
knowledge of the kernel, so it should not be
considered as a replacement for performing system
calls via Tr ap#0 (for example OS9 F$xxXx).

| dbra. m Make a dbr a loop using a 32-bit value.

sysgl ob. m Get the system global data pointer.

/5?\ MICROWARE"

Table 1-4 OS-9 Macros (continued)

Name Description

sysboot . m Bootstrap routines. It allows several bootstrap
modules to be used together without getting name
clashes for SysBoot .

ronpak. m Setfor Sysl nit ROM extension code.

reach32. m Make a 32-bit PC-relative branch.

MWOS/OS9/SRC/IO Directory Structure
Taking a closer look at MAOS/ OS9/ SRC/ | Owe see:

Figure 1-4 MWOS/OS9/SRC/IO Directory Structure

N
10
|
4(7“? | PCF RBF | SCF
| NFM | PIPE | SBF | SCsI

L
(?isc DRVR FM
— | (—\l;
SCsil DESC DRVR FM

| |
| RB327 | RBSCCS RBVCCS

| RB54000 | RBTEAC
DEFS SCSI33C9] SCSI53C94 SCSI5380

| SCsSI327 SCSI53C71 | SCSICOM

— — | |
DEFS DRVR | FM | MAKETMP

| DOC | ETC | LIB | UTILS

/5//& MICROWARE"

Almost all of the file manager subsystems contain at least two additional
subdirectories:

DESC (except for | NET) Hholds descriptor sources.

DRVR Holds driver sources.

FM Holds file manager source if you
purchased a license for file manager
source.

Some file manager subsystem directories contain additional
subdirectories for additional functional modularization. For example, the
RBF/ DRVR directory has a SCSI subdirectory holding yet more
subdirectories for each high-level SCSI driver.

In addition to the file manager subsystems, there is a SCSI directory for
low level SCSI drivers whose usage spans across several file
managers. See the SCSI system notes in Appendix D for more
information about SCSI drivers.

MWOS/OS9/SRC/ROM Directory Structure
Taking a closer look at MAOS/ OS9/ SRC/ ROMwe see:

Figure 1-5 MWOS/OS9/SRC/ROM Directory Structure

N
ROM

CBOOT DEBUGGEH

LIB | SERIAL

COMMON | DISK

MVMEO050

| TAPE

DEFS | INETBOOTl | SYSBOOT

TIMERS

| DISK | NETWORK | TAPE

| BOOTLIB

BOOTMT2S|

BOOT327 BOOTS5380)

BOOTSCC

BOOT33C9

BOOT53COog

DESC

BOOT374 | BOOT8259 BOOTCM(

| BOOT7990

| BOOTBP

/5//& MICROWARE"

These directories are as follows:

Table 1-5 MWOS/OS9/SRC/ROM Directories

Directory

Contains

CBOOT

CBOOT/ DEFS

CBOOT/ DI SK

CBOOT/ | NETBOOT

CBOOT/ NETWORK

CBOOT/ SYSBOOT

CBOOT/ TAPE

CBOOT/ TI MER

COVMMON

DEBUGGER/ ROVBUG

DI SK

Contains almost all of the boot code written in
C (except for some SCSI driver whose source
Is shared with the normal running system
drivers). As can be seen in the above
diagram, it has a subdirectory structure
contained within it.

Include (. h) files for interface and
media-independent definitions.

Boot disk driver and descriptor source
subdirectories.

BOOTP client source.
BOOTP network driver source subdirectories.

General purpose booters and common code
libraries.

Boot tape driver source subdirectories.
BOOQOTP timer sources.

Common assembler sources for all boot
ROMSs.

ROMbug debugger source.

Assembly language boot disk drivers.

Table 1-5 MWOS/OS9/SRC/ROM Directories (continued)

Directory Contains

LI B Intermediate object libraries for linkage into
target ROM images.

MWMEO50 Assembly language system initialization
support routines for the MVMEOQ50.

SERI AL Assembly language low-level console and
communications port drivers.

TAPE Assembly language boot tape drivers.

Figure 1-6 Object Directories

68000
J

/5//& MICROWARE"

—~L_ —~L_ | | | —
CMDS DEFS | LIB | PORTS | sYs SYSMODS
N 1
BOOTOBJS MC6830X GCLOCK

%

MVMEO050

MB2470 | MVMEO050 | MVME107 | MVME320 MVME374 OEM_MINIMU
68020

=

—_

CMDS DEFS | LIB PORTS SYS
—_ |
BOOTOBJY | | |
MVME133 | MVME147 MVME165 MVME167
CPU32
CMDS DEFS LIB PORTS SYS
BOOTOBJY /—J_ | /—\]_
BCC332 | BCC340 WW349

As you can see, there is a different subdirectory structure for each
processor family in the 68000 architecture. Commands and system
modules common across all 68000 families reside in 68000/ CVDS and
68000/ CVDS/ BOOTOBJS. Similarly, descriptors for VMEBus
peripherals (MVMEO050, MVME320, and MVME374) applying to all

68000 families reside in the respective directory in 68000/ PORTS.
Clock drivers specific to the MVMEQ50 are built in
68000/ SYSMODS/ GCLOCK/ MWMEO5S0.

Each PORTS directory contains directories for example ports to various
target VMEBUuUSs processors (MVME107 in 68000/ PORTS; MVME133 4,
MVME147 and MVME165 in 68020/ PORTS; BCC332, BCC340, and

WW349 in CPU32/ PORTS).

Table 1-6 MWOS Object Directories

Directory

Contains

CBOOT/ SYSBOOT

General purpose booters and common code
libraries.

CBOOT/ TAPE Boot tape driver source subdirectories.
CBOOT/ TI MER BOOTP timer sources.
COVIVON Common assembler sources for all boot

DEBUGGER/ ROMBUG

ROMs.

ROMbug debugger source.

DI SK Assembly language boot disk drivers.

LI B Intermediate object libraries for linkage into
target ROM images.

MVMEOS0 Assembly language system initialization
support routines for the MVMEO50.

SERI AL Assembly language low-level console and
communications port drivers.

TAPE Assembly language boot tape drivers.

/\://& MICROWARE"
Additional Reference Materials

If you are not familiar with OS-9, review some of the other Microware
manuals. All of the manuals listed here are pertinent to the installation
process and are included with the software distribution.

e Using OS-9 for 68K Processors

e 0OS-9for 68K Processors Technical I/O Manual
e 0S-9 for 68K Processors Technical Manual

e 0S-9for 68K PC File Manager (PCM) Manual
e 0OS-9for 68K OEM SSD Add-On Pak

e Utilities Reference Manual

e Using RomBug Manual

e Using the Source Level Debugger

e Getting Started with Microware Hawk

e Using Microware Hawk

e Microware Hawk Programming Reference

e Using Hawk Macros

Review these books until you have a basic idea of how OS-9 works and
how it is organized. You should be familiar enough with these manuals
so you can easily locate essential information for reference.

Other reference books may also be useful depending on your system’s
configuration. You can order OS-9 Insights and the OS-9 Primer from
your Microware distributor.

Depending on your hardware configuration, you may find some or all of
the following reference books useful. You can order these reference
books directly from Motorola or through most bookstores:

MC68020 32 Bit Microprocessor User’s Manual
Prentice-Hall

e MC68030 Enhanced 32 Bit Microprocessor User’s Manual
Prentice-Hall

» MC68881/MC68882 Floating Point Coprocessor User’s Manual
Prentice-Hall

e MC68851 User’s Manual

Prentice Hall

e CPU32 Reference Manual
Motorola

e MC68332 SIM User’s Manual
Motorola

e TPU Reference Manual
Motorola

* Programmer’s Reference Manual
Motorola

You can order this reference book from Signetics or Philips:

16/32 Bit Highly-Integrated Microprocessor SCC68070 User Manual
Philips; Parts | (hardware) and Il (software)

1 Getting Started Aﬂ MICROWARE"

34 0S-9 for 68K Processors OEM Installation Manual

Chapter 2: Porting OS-9 for 68K

This chapter includes the following topics:

* Getting Started

* Understanding the OS-9 for 68K Booting Process
The Four Porting Steps

ﬁﬂ MICROWARE"

/\://& MICROWARE"
Getting Started

Once you have installed all of OS-9 for 68K’s boot code sources, driver
sources, and system modes (such as the kernel), the sheer volume of
files may overwhelm you.

For More Information

You should keep in mind Microware provides example source files for
many different types of device drivers, whether they be serial, disk
controller, tickers, or real-time clocks. You only need what your target
hardware has available. If you need the disk space, you can get rid of
the rest. (Remember, your Microware distribution tape, disc, or disks
still contain all of the files.) This can considerably narrow down your
focus of porting.

Knowing your hardware well makes it easier for you to port OS-9 to it.
The following information is extremely helpful during the porting
procedure:

* What I/O devices do you have?

* How are these devices mapped into memory?

* How is the memory organized?

* What does the memory map of the entire system look like?

Understanding the OS-9 for 68K Booting
Process

Although the OS-9 system itself (the kernel, file managers, and
processes) is very modular in its architecture, the boot code is different
and a distinction is made between the OS-9 system and the OS-9 boot
code. You can think of the OS-9 boot code as one program, consisting
of several different files, that gets linked together and burned into ROM
in order to bring up the OS-9 system.

A bootfile must exist in order to boot OS-9. This bootfile is simply
merged OS-9 system and program modules, with the kernel usually
being the first module.

i Note

The bootfile must contain the kernel.

This bootfile can exist:

« InROM

* Onadisk

* On atape

* Any other type of media

The purpose of the boot code is to:

» Set the hardware into a known, stable state

» Set up certain table and memory configurations
* Find the bootfile and start executing the kernel

Three steps are necessary to boot OS-9 for 68K. These are covered in
the following pages.

/\://& MICROWARE"
Step 1. Power Up the ROMbug Prompt

Once you supply power to the 68000 processor or a reset occurs, the
processor:

* Performs a longword read cycle at address 0.

* Places the result in the a7 register (stack pointer).

» Performs a longword read cycle at address 4.

* Places the result into the program counter (PC) register.

e Starts executing instructions as it normally does.

i Note

Step 1 is the most difficult step to complete, and unless you have an
emulator or existing debugger on your running target, much of this step
is done blind. However, once ROMbug is available, it is a good
debugging tool for the remainder of the port.

Many computer boards have address logic that maps these first two
reads to wherever the ROM is actually located. Then, the address
mapping returns to the board’s standard memory map.

Once this has been done, the processor can execute machine language
instructions like it normally does. The initial PC value in the OS-9 boot
code is a label called Reset : . This label is defined in the boot . a file.

For More Information

You can think of boot . a as the kernel for booting. It is prewritten and
you do not have to modify it. Chapter 3: Step One: Porting the Boot
Code, contains additional information about boot . a.

Step 1.
Step 2.

Step 1.
Step 2.
Step 3.
Step 4.

For more information about sysi ni t . a, refer to Chapter 3: Step One:
Porting the Boot Code.

Once boot . a starts executing, it:

Sets up a few variables.

Branches to a label called Sysl ni t.

Sysl ni t is defined in the sysi ni t. a file. Although examples of
sysi ni t. a are available from the boot code source, you must modify
this file to initialize specific hardware devices on the target board.
Sysl ni t branches back to boot . a.

boot . a then:

Determines on which processor it is running.
Performs memory searches.
Calls Consl nit ini oxxXx. a to initialize the console port.

Calls Sysl ni t 2 and UseDebug, which are also defined in the
sysinit. afile.

After returning to boot . a, the ROM debugger is called to give a
register dump of the processor and prompt for more instructions. The
following diagram illustrates this process:

2 Porting OS-9 for 68K Aﬂ MICROWARE"

Step 2:

Step 1.

Step 2.
Step 3.
Step 4.

40

Figure 2-1 Chart of Files and the Subroutines They Contain

to processor
Reset:
.t;.ra Sysint
SysRetrn:

bsr Consinit Consinit:
rts

bsr Sysinit2»

bsr UseDebud

bsr Debug

For More Information

Boot . a is covered in more detail in Chapter 3: Step One: Porting the
Boot Code.

ROMbug Prompt to Kernel Entry

boot . a branches to the SysBoot routine. SysBoot :

Prompts the operator for the boot media or (optionally) auto-boots from
predetermined media (target specific)

Finds the bootfile
Finds the kernel
Returns a pointer to the kernel in the a0 register

0S-9 for 68K Processors OEM Installation Manual

Step 1.
Step 2.

Once SysBoot has found the bootfile and the kernel’s pointer is returned
to boot . a, boot . a:

Sets up the registers according to the kernel's specifications
Jumps to the execution entry point in the kernel

Step 3: Kernel Entry Point to $ Prompt

Step 1.
Step 2.
Step 3.
Step 4.

The cold part of the kernel finishes the task of booting OS-9. It sets up
variables in the system global data table (commonly referred to as the
system globals). It also:

* Builds the kernel's RAM memory pools by searching the memory list

* Builds the module directory by searching colored memory ROM
areas, special memory areas, and ROM memory areas

* Initializes system tables (such as the device path table)
From here, it does the following:

Open the console device
Chd to the system device
Execute any P2 modules from the Init module’s Ext ens list

Fork the first process

The cold part of the kernel then disinherits the first process and exits by
calling the kernel’'s system execution loop. The OS-9 system should
now be booted and executing as expected.

/5?\ MICROWARE"

For More Information
For more information about the kernel’s cold routine, refer to Chapter 4.
Step Two: Bringing Up the Kernel and Console I/O.

The Four Porting Steps

Four steps are required to port OS-9 on your target hardware. The
following chapters explain these procedures in greater detail.

Step 1. Porting the boot code.
This procedure includes steps 1 and 2 of the OS-9 boot process. The
files needed to accomplish this are vect or s. a, boot . a, i oxxx. a,
I oyyy. a,sysinit.a,systype. d, syscon. c, booti o. ¢, and the
sysboot and r onbug libraries. This step includes:

» Hardware dependent initialization and configuration (sysi ni t. a).
« ROMbug.

* The ability to boot from ROM or an image downloaded into RAM.
You must define key labels in syst ype. d and the makefile to
correctly configure the code for your particular target hardware.

For More Information
Chapter 3: Step One: Porting the Boot Code, contains more information
about the files needed.

Step 2.

Step 3.

/5?\ MICROWARE"

Note

For your initial port of OS-9 to your target, we strongly recommend you
first create a ROM/RAM based system to reduce the complexity of the
port (downloading target-specific modules into RAM through ROMbug’s
communication port from the development system). Later, as more of
the port is accomplished, you can incorporate other booting methods.
For this reason, source for a simple ROM/RAM boot routine has been
included in Appendix F: Example ROM Source and Makefiles. This
simple menu booter is syscon. c.

Porting the OS-9 kernel and basic 1/0 system.

This involves more modification to the syst ype. d file. You need to
make an | ni t module and high-level serial drivers and descriptors for
your particular hardware. Once this is complete and is working, a
ROM-able OS-9 system exists.

For More Information

The I ni t module is a data module from which the kernel configures
itself. For more information about the Init module, refer to Chapter 2,
The Kernel, in the OS-9 for 68K Technical Manual.

Creating customized I/O drivers and finishing the boot code.

In this porting procedure, more high-level drivers are developed and
debugged for other serial ports, disk drivers and controllers, clocks, and
any other available devices. Once the high-level drivers are working,
you can modify the boot code to boot from the various devices
available. The C boot routines are good in this regard.

For example, once the basic port of a board has been completed
(porting procedure’s 1 and 2), a high-level driver for a floppy drive (or
other installable media) is developed next. Once it is known to work, you

Step 4.

can format a floppy disk and install an OS-9 bootfile on the floppy. At
this point, you can create a low-level driver for C boot (which may use

much of the same logic and code as the high-level driver) that boots the
system from the floppy.

Testing and Validation
This involves the final testing and verification of the complete system.

Your distribution package was designed to follow this procedure.

2 Porting OS-9 for 68K Aﬂ MICROWARE"

46 0S-9 for 68K Processors OEM Installation Manual

Chapter 3: Step One: Porting the Boot

Code

This chapter includes the following topics:

Introduction

The Defsfile File

The Oskdefs.d File

The Systype.d File

The Vectors.a File

The Boot.a File

The ioxxx and ioyyy Files
I/O Driver Entry Points
The Sysinit.a File

The Syscon.c File

The ilnitext.a File

Putting the ROM Together

Aﬂ MICROWARE"

/\://& MICROWARE"
Introduction

This chapter deals with the first step of porting OS-9 for 68K. This
involves creating and installing a ROM that contains the system
initialization code and a special ROM debugger (ROMbug).

About the Boot Code

In a sense, the name boot code can be misleading. The boot code does
not try to boot the system by reading data from a disk; this comes in a
later step. At this point, the boot code has the following functions:

* initialize the basic CPU hardware into a known, stable state

* determine the extent and location of RAM and ROM memory
* provide low-level console I/0

» call the ROMbug debugger

The ROMbug debugger is located in the same part of the ROM as the
boot code. The ROMbug debugger can download software from the
host system. It provides powerful debugging facilities such as:

» Tracing
« Single instruction stepping
» Setting breakpoints

The ROMbug debugger remains in place for the entire porting process.
It can also be used to help debug all of your applications, especially any
system state or driver code. However, for your final production ROM,
you may wish to exclude ROMbug.

The ROM is made from a number of different files linked together to
produce the final binary object code. The vast majority of the code is not
system dependent and therefore is supplied in relocatable object code
form (files with. r or. | suffixes). You only have to edit a few source files.
You then use the make command to assemble these files and link them
with the other. | files to create the ROM binary image file.

How to Begin the Port: The Boot Code

The first step in porting OS-9 is to port the boot code, or basically the
code always residing in the ROM. To do this, you need to create several
files in a new PORTS/ <t ar get > directory:

Table 3-1 Ports Directory Files

Name The File Should Contain

systype.d The target system, hardware-dependent definitions.

sysinit.a Any special hardware initialization your system may
require after a reset occurs.

i Note

These files are specific to your particular hardware. syst ype. d and
sysi ni t. a are covered later in this chapter.

The files provided in Appendix F: Example ROM Source and Makefiles
are code to a working example and will not work for your particular
hardware. However, these are minimal examples and can be reworked
to match your hardware if necessary. Create these files in your own
PORTS/ <t ar get > directory in one of the processor family object
directories.

In most cases, you do not need to write the low level drivers, i oxxx. a
and i oyyy. a, because the Development Kit contains code to many
existing devices. If you have a device for which code has not been
written, the entry points needed for drivers are documented later in this
chapter.

/5?\ MICROWARE"

i Note

Do not modify the other files, such as vect or s. a, boot . a, and
sysboot . a. Altering these files may cause the port to not function.

Once you have properly adjusted the syst ype. d and sysinit. a
files, use the make- f =r onbug. make command to produce a ROM

image file.

Testing the Boot Code

To test the boot code:

Step 1. Burn a set of ROMs with this image.
Step 2. Turn on your hardware.
Step 3. See if a ROM debugger prompt comes up.

* If the ROM debugger prompt does come up, you have successfully
completed the initial port and are ready to continue.

« If it does not come up, look at Appendix B: Trouble Shooting.

ROM Image Versions

Generally, two slightly different makefiles exist in the PORTS/ <t ar get >
directory: r onbug. nake and r om nake.

1. rombug.make: Full boot menu with ROMbug.
Contains all the C boot functionality with the ROMbug ROM
debugger. This is a large image found in PORTS/ <t ar get >/
CVDS/ BOOTOBJ S/ ROVBUd r onbug.

2. rom.make: Full boot menu.
Contains the C boot functionality without a ROM debugger. This
image is much smaller than the ROMbug image alone. Find it in the
PORTS/ <t ar get >/ CVDS/ BOOTOBJ S/ NOBUG r om This could be
considered the final production version.

Component Files of the ROM Image

Ther onbug. make and r om nake makefiles create the ROM image by
combining and linking several sets of files to make the binary object
code:

* The common target startup (r om comon. |).
This is built from target-independent source files (vect or s. a and
boot . a) in the SRC ROM COMVON directory.

Table 3-2 Common Target Startup Source Files

Source Relocatable Contents

systype.d System-wide hardware definitions
boot . a boot . r Standard system initialization code
vectors.a vectors.r Exception vector table

» The low-level serial IO code (rom serial .)
This is built from target-independent source files (i oxxx. a, and
i oyyy. a, if needed) in the SRC/ ROM SERI AL directory.

/5//& MICROWARE"

Table 3-3 Low-level 10 Serial Source Files

Source Relocatable Contents
I OXXX. a I OXXX. I Console device primitive 1/O routines*
I oyyy. a I oyyy.r Communication port I/O routines*

* The actual names of the files ioxxx.a and ioyyy.r vary according to the
hardware device type. For example, a driver for a Motorola 6850 has the
name i06850.a, and so on.

* The target-specific startup and bootmenu code (rom port.|)
This is built from target-specific source files (sysi ni t . a,
syscon. ¢, and boot i 0. c) in the PORTS/ <t ar get > directory.

Table 3-4 Target-specific Startup and Bootmenu Code Source Files

Source Relocatable Contents

sysinit.a sysinit.r Custom initialization code

syscon. c syscon. r Custom initialization code

booti 0. c booti o.r I/O support routines for bi nboot ()

e The CBoot libraries (sysboot.| androm o. 1)

Table 3-5 C Boot Libraries

Source Relocatable Contents
sysboot . | sysboot library routines.
rom o. | 1/0O routines for CBoot and ROM
debugger.

 The debug files (r onbug. |).
This code is used during the port; you can exclude it from the final
production boot ROM. All debug files are provided in relocatable
format. The source code to the debug files is not supplied with the
Developers Kit because you do not need to edit or assemble these
files.

Table 3-6 Debug Libraries

Source Relocatable Contents

ronbug. | Full featured ROM debugger

Note
Not all of the relocatable files listed are supplied in the distribution
package; some are created during the porting process.

/5?\ MICROWARE"

A WARNING

Read the rest of this chapter before you begin editing the syst ype. d
file!

The Defsfile File

The def sfi | e file acts as a masteri ncl ude file to include all
definition (. d) files within assemblies in the PORTS/ <t ar get >
directory. def sfi | e typically includes <oskdef s. d> (from

SRC/ DEFS) and syst ype. d (from PORTS/ <t ar get >) at a minimum.

/\://& MICROWARE"
The Oskdefs.d File

The oskdef s. d file is OS-9's system-wide symbolic definitions file. It
can be found in the SRC/ DEFS directory. oskdef s. d defines some of
the names used in syst ype. d.

i Note

Do not edit oskdef s. d. oskdef s. d is used for generic system-wide
target-independent definitions only. If system specific definitions are
needed, edit syst ype. d.

You should make a listing of both syst ype. d and oskdef s. d. Study
them so you understand how they are used and how they are related. If
you have undefined name errors when assembling various other
routines later, the files were probably not included or were not
configured properly.

Notice that many hardware-dependent values and data structures are
defined as macros in syst ype. d. These macros are used in many
other parts of the boot ROM as well as files used in later stages of the
installation. In particular, device driver and descriptor source files
reference these macros.

The Systype.d File

The syst ype. d file should contain the target system,
hardware-dependent definitions. This includes:

* Basic memory map information

» Exception vector methods (for example, vectors in RAM or ROM)
* /O device controller memory addresses

* Initialization data

i Note

Target-specific definitions are all included in the syst ype. d file. This
allows you to maintain all target system specific definitions in one file.

You must create a syst ype. d file before you re-assemble any other
routines.

syst ype. dis included in the assembly of many other source files by
means of the assembler’s use directive. You need to make a new
syst ype. d file defining your target system as closely as possible,
using the sample file provided in the distribution package. Some
definitions are not used until later in the porting process, so some of
these definitions are not covered until later in this manual.

syst ype. d consists of five main sections used when porting OS-9:
1. ROM configuration values.

Target system specific definitions.

Init module CONFI G macro.

SCF device descriptor macros and definitions.

a s~ N

RBF device descriptor macros and definitions.

/5//& MICROWARE"

The ROM configuration values and the target system specific definitions
are the only sections important for the boot code. Therefore, these
section are covered in this chapter. Chapter 4: Step Two: Bringing Up
the Kernel and Console 1/0O covers the remaining sections.

The ROM Configuration Values

The ROM configuration values are normally listed at the end of the
syst ype. d file. These values are used to construct the boot ROM and
consist of the following:

» Target specific labels

» Target configuration values

* Low level device values

» Target system memory definitions

Target Specific Labels

Target specific labels are label definitions specific for your target
hardware. They can define:

 Memory locations for special registers on your hardware.
» Specific bit values for these registers.

For example, your target hardware processor has a register controlling
to which interrupt levels on a bus the board responds. This may be
necessary if several target boards are sharing the same bus, and you
would like to have different boards handle different interrupt levels. The
base of all your control registers on your board starts at address

F800 0000 and the offset to this particular register is 8. The register is
a single byte, with each bit corresponding to an interrupt level. Setting
the bit enables the interrupt. Conceptually, the register may look
something like the following:

Figure 3-1 Interrupt Level Control Register

7 0

F8000008 NA| L7 L6 | L5| L4 | L3 | L2 | L1

L = IRQ Level

Your label definitions for this register might look like the following:

* Define control registers.
Cont r ol Base equ $f 800 0000

* (X her registers defined.
| RQCont rol equ Control Base+8
Q her registers defined.

* Define Control Register Values
Level 1Enabl e equ 990000001
Level 2Enabl e equ 990000010
Level 3Enabl e equ 990000100
Level 4Enabl e equ 990001000
Level 5Enabl e equ 990010000
Level 6Enabl e equ 990100000
Level 7Enabl e equ %©1000000

Di sabl eAl'l equ O

Low evel Enabl e equ

Level 1Enabl e+Level 2Enabl e+Level 3Enabl e

Hi ghLevel Enabl e equ Level 4Enabl e+Level 5Enabl e+Level 6Enabl e
Enabl eAl | equ LowlLevel Enabl e+Hi ghLevel Enabl e+Level 7Enabl e

/5?\ MICROWARE"

i Note

This is only an example and more than likely is not valid for your
hardware. However, it does show you how to handle these definitions.

If your hardware:
* has a lot of special registers such as these, this can be a lengthy list.
« does not have many registers like this, the list can be very short.

You can review the supplied syst ype. d files to see how to define
hardware registers. However, the values in the supplied syst ype. d file
will not work on your target hardware.

For more information about the use of these labels, refer to the section
onthesysinit. afile.

Target Configuration Labels

The target configuration labels are needed to configure the boot code
properly for your target hardware. The following are a list of these

variables:

Table 3-7 Target Configuration Labels

Label

Effect

ROVBUG

CBOOT

RAMVect s

PARI TY

Specify ROMoug is used. The initial stack area is
increased in size to accommodate the larger usage
by the C drivers, and the size of the ROM global
data area is determined dynamically. Several of the
vectors are pointed into the ROVbug handlers.

Boot . a also calls the ROMbug initialize data routine.

Specify CBOOT technology is to be used. The ROM
global data area size is determined dynamically. You
can also use this flag to enable sync-codes in
assembler code. This allows the assembler boot
drivers to be interfaced with the CBOOT sysboot
routines.

Specify the vectors are in RAM. This allows boot . a
to copy the vectors to the appropriate place.

Specify parity memory is present. boot . a initializes
parity by writing a pattern into the memory. The
Menii st macroinsyst ype. d defines the memory
to initialize.

/5//& MICROWARE"

Table 3-7 Target Configuration Labels (continued)

Label

Effect

MANUAL _RAM

TRANSLATE

VBRBase

CPUTyp

Specify you must explicitly enable RAM memory.
This enabling is usually performed in SyslIni t.
Therefore, the 32-bit br a to Sysl ni t does not work
if you have not enabled the RAM. To allow operation
in this situation, define MANUAL _RAM and the call to
Sysl ni t is a straight br a instruction. This means
the br a target must be within a 16-bit offset.

Define the value to use for the boot driver DMA
address translation. If the local CPU memory
appears at a different address for other bus masters,
boot drivers can access the global Tr ansFact label
to determine the system’s address translation factor.
If this label is not defined, Tr ansFact defaults to O.

Define the address for the system’s Vector Base
Register (68020, 68030 68040, and CPU32
processors only). Boot code can access the global
VBRPat ch label defined in boot . a to determine
where the vectors are located. If this label is not
defined, VBRPat ch defaults to 0.

Specify the CPU type. Valid values for CPUTyp are
defined in the next section.

CPUTyp Label and Supported Processors

The large number of variations of processors available from Motorola
makes it important to ensure the label CPUTyp (defined in syst ype. d
for your system) is correctly set, so certain features of the BootStrap
code are correctly invoked.

The label CPUTyp is used for conditional assembly of portions of the
boot code. The actual processor type is detected by the boot . a code,
and passed to the kernel. If you incorrectly define CPUTyp, the
processor type passed by the boot . a code is still correct; however,
some portions of the bootstrap code may have conditional parts missing
or incorrectly invoked.

Table 3-8 CPUTyp and Related Processors

Value Passed to
CPUTyp Value Processor Kernel

68000 68000, 68008, 0
68301, 68303,
68305, 68306

68302 68302 0

68010 68010 10

68020 68020, 68EC020 20

68030 68030, 68ECO30 30

68040 68040, 68EC040, 40
68LC040

68070 68070 (aka 70

9xC1x0-family)

68300 68330, 68331, 300
68332, 68333,
68334, 68340,
68341, 68349,
68360

68349 68349 300

/5?\ MICROWARE"

i Note

The naming conventions for 683XX processors can be confusing. The
processors numbered in the range 68301 - 68306 are 68000 core
based processors, and thus (from a software point of view) the boot . a
code takes any value of CPUTyp in the range from 68301 to 68309 to
be a 68000 processor. The processors in the number range 68330 and
up are CPU32 or CPU32+ (aka CPUO030) based cores, and thus the
boot . a code takes any value of CPUTyp in the range from 68330
through to 68399 as a CPU32-based processor.

CPUTyp having a value of 68302 causes the boot . a code to reserve
vectors 60 - 63, but otherwise it is treated like a 68000.

The value passed to the kernel is a biased value, as the kernel adds a
value of 68000 to the value passed up, and then stores this new value
in the kernel’s system global D_MPUTYyp.

Low Level Device Configuration Labels

Low level device configuration labels configure the low level I/O. These
values are as follows:

Table 3-9 Low-level Device configuration Levels

Label Effect

Cons_Addr Thisis the base address of the console device. This is
used by the low level i oxxx. a serial driver.

ConsType This is used by the i oxxx. a code to determine which
device is the console.

Table 3-9 Low-level Device configuration Levels (continued)

Label Effect

Comm_Adr This is the base address of the communications port,
or Comm port. It is used by the ROM debugger to
download S-record files from the host.

Commilype This is used by the i oyyy. a code to determine which
device is the Comm port.

Each individual i oxxx. a and i oyyy. a driver has its own configuration
labels. These labels are defined for each driver within the source of the
driver, as well as Appendix C of this manual. Refer to the driver you will
use, and set these labels correctly.

You need to define the following labels for the low level disk booter:
« FD Vct

 FDsk Vct

» SysDisk

You should define these labels as 0 if you do not have a disk booter.

Target System Memory Labels

Target system memory labels define where system memory is located.
The MemDefs macro in the systype.d file is the mechanism in the
boot code to define memory. It consists of two areas:

* General system free RAM
* Special memory

The free RAM is self-explanatory. The special memory definitions are
the areas through which the kernel searches for modules when booting.

/5?\ MICROWARE"

You need to define the following labels:

Table 3-10 Target System Memory Labels

Label Description

Mem Beg The start of system RAM.

Mem End The end of system RAM.

Spc. Beg The start of the special memory list.
Spc. End The end of the special memory list.

You can define several banks of non-contiguous RAM and special
memory. The entire RAM list is null terminated, and the entire special
list is null terminated.

Example Memory Definitions

The following is an example MenDef memory definition:

MenDefs nacro

dc.| Mem Beg, Mem End 1st RAM bank start/end address

*
dc.l O * Null term nator
dc.| Spc.Beg, Spc. End * 1st special bank start/end addr
dc.l O * Null term nator
dc.l 0,0,0,0,0,0,0,0 * Additional places for padding

endm

For More Information

Due to the way the boot code has been written, the first RAM bank must
be large enough to hold the system globals, the data area for the ROM
debugger, and the entire bootfile if booting from a device. Refer to the
section on the boot . a file later in this chapter for more information.

i Note

Since the list is a null terminated list, never define Mem Beg or

Spc. Beg as 0. Mem Beg is usually offset by 0x400 bytes to allow room
for the vector table. This is especially important if VBRBase is set to an
area of RAM.The memory location of the vectors and general system
RAM memory must not exist in the same place. If you have a ROM
bank starting at 0, be sure to offset the Spc. Beg by an even number of
bytes, usually 2 to 4.

The following is another MenDef example. This example has multiple
banks of RAM and special areas:

MenDefs macro
dc.| Mem Beg, Mem End 1st RAM bank start/end address

dc.| Meml. Beg, Menl. End 2nd RAM bank start/end address
dc.| MenR.Beg, Men2. End 3rd RAM bank start/end address
dc.| O Nul | term nator

I
I
I
dc.| Spc. Beg, Spc. End 1st special bank start/end addr
I
I
I

dc.| Spcl.Beg, Spcl. End 2nd special bank start/end addr
dc.l1 O Nul | term nator

de.l 0,0,0,0,0,0,0,0, Addi tional paddi ng for patching
endm

The additional areas for patching allow you to patch the memory list
without remaking the ROM image.

i Note

As described later in boot . a, the RAM search is a destructive search,
and the special memory search is a non-destructive, read-only search.

/5?\ MICROWARE"

WARNING

During the initial porting phase, it is often customary to define an area
of RAM as special memory, in addition to any ROM areas. The reason
for this is when you try to debug any high level drivers, either the serial
driver or later, the disk driver, it is easier to download the driver to RAM,
debug it there, make changes in the source, and when rebooting,
download the driver again. This way, you do not need to burn an
EPROM every time you change the driver. This special area of RAM
must be carved out of the normal RAM list and put as a separate bank
of special memory. Once the port is complete and all drivers are
debugged, the special RAM area can be returned to the general RAM
memory list. Modules needed in the bootlist are covered further in
Chapter 4: Step Two: Bringing Up the Kernel and Console I/0O.

The Vectors.a File

The vect or s. a file contains definitions for the exception vector table.
You normally do not need to edit this file unless your target system has
an unusual requirement.

For More Information
Refer to Appendix D: SCSI-System Notes for details of the conditional
assembly flags used by this file.

Depending on your system hardware, the actual vectors can be located
in RAM or ROM. To specify the location of the vectors, define the label
RAMVect s inthe syst ype. d file. If ROM space is exceedingly tight, all
vectors (except the reset vectors) may be located in RAM. This is only
possible if the final production version of the boot ROM has ho ROM
debugger and the reset vectors are included in ROM. This saves a little
ROM space due to lack of duplication.

/5//& MICROWARE"

The Boot.a File

The boot . a file contains the system initialization code that is executed
immediately after a system reset. You should not need to edit this file.
The sysi ni t. afile is reserved as a place for you to put code for any
special hardware initialization your system might require after reset.

Steps Boot.a Goes Through to Boot the Kernel

Step 1.

Step 2.

Step 3.

Boot . a goes through the following steps to boot the kernel:

Assume a full cold start for growth method.
The kernel validates modules using a growth method.

« With a full growth method, when the kernel validates modules, it first
validates the module header and then validates the full module’s
CRC number.

« With a quick growth method, the kernel simply validates the module
header. Although booting is quicker, there is more room for error. A
module may be in memory and may be corrupted.

Mask interrupts to level 7.
Interrupts are masked to ensure the boot code has a chance to run.

Call the SyslInit label.
Sysl ni t ensures all interrupts are cleared and the hardware is in a
known, stable state.

For More Information
Sysl ni t is defined in the sysi ni t. a file.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Clear out RAM.
Clears out the RAM used for the system globals and the global static
storage used by ROMbug and the boot code.

Record growth method in the Crystal global variable.
This growth method is passed to the kernel when the kernel is jumped
to.

Set up 68000 vector table to vbr register or memory location O if
needed.

If the vector needs to be copied from the ROM to a RAM area, this is
where it occurs. This copy occurs if the RAMVect s label is defined.

Set up OS-9 exception jump table.

The exception jump table is an intermediate table between the vector
table and the kernel. The pea and | np instructions are set up in the
table at this time.

Each vector in the vector table points to a particular entry in the
exception jump table. Each entry in the exception jump table has the
following format:

pea #vector tabl e address,-(a7)
j mp #vector _excepti on_handl er

Initialize global data for RomBug, if needed.
If you use RonBug, its global data needs to be initialized before it can
run.

Determine CPU type.

Possible CPU types include 68000, 68010, 68020, 68030, 68040,
68070, or 68300. The CPU type is saved in the MPUType system global
variable. When running, the kernel keys off of this variable to determine
the type of processor on which it is running.

Branch to the UseDebug label.
If UseDebug returns with the zero bit in the CCR cleared, the ROMbug
Is enabled.

Step 11.
Step 12.

Step 13.

Step 14.

Step 15.

Step 16.

/5//& MICROWARE"

For More Information
UseDebug is located in the sysi ni t. a file.

Initialize ROMbug if it is enabled.

Run the SyslInit2 routine.
Perform any final hardware initialization.

For More Information
Sysl ni t 2 is also located in the sysi ni t . a file.

Initialize the Console port and print boot strap message.
This is the first sign the system is doing anything.

Perform RAM and special memory searches of memory and parity
enable memory if needed.

The routines use both bus error and pattern matching to determine
RAM and ROM sizes. This relies on the MenDef s macro to determine
the memory areas to search.

Enter ROMbug if it is enabled.
The debugger is finally reached. At this point, everything needed to find
the kernel has been done.

Call SysBoot label to obtain kernel.
You determine how this code works. A pointer to the kernel is all that
needs to be returned.

i Note

There are several routines written to help. sysboot . a is a routine that
searches the ROM area for the kernel. There is no need to adjust this
file, it works as is.

The C boot routines are also available to simplify booting from various
devices.

SysBoot has the following register conventions when it is jumped to:

Table 3-11 SysBoot Register Conventions

Register Description

al Boot ROM entry point.

a3 Port address from Di skPor t label.
a4 System free RAM list.

ab Exception jump table pointer.

a6 Operating system global data area

(4K scratch memory).

a7 System ROM list.

/5//& MICROWARE"

When SysBoot returns, the following registers must be set as follows:

Table 3-12 Registers Set After SysBoot Returns

Register Description

a0 Pointer to an executable module with a valid header
(hopefully, the kernel).

a4 Possibly updated free RAM list.

a5 Must be intact from above.

a7 Possibly updated system ROM list.

cc Carry set, d1. werror status if bootstrap failed.

Step 17. Validate the kernel.
After SysBoot returns to boot . a with a pointer to the kernel, boot . a
validates the kernel header.

Step 18. Initialize registers for entry to the kernel.
Before entering the kernel, the registers should have the following
conventions:

Table 3-13 Registers Prior to Entering Kernel

Register Description

do. | Total RAM found in the system.
dil. | MPUTy pe.

d2. | Trapflag for system debug.

d3. | Growth startup method.

Table 3-13 Registers Prior to Entering Kernel (continued)

Register Description

d4-d7 Clear.

a0 Kernel entry point.

al Boot ROM entry point.

a2-a3 Clear.

a4 System free RAM list.

ab Exception jump table pointer.

a6 Operating system global data area

(4K scratch memory).

a7 System ROM map.

Step 19. Jump to the kernel’s execution point.

Memory Search Explanations

An important function of boot . a is building the system’s memory
allocation using a memory search list. OS-9 uses this search list to
define the usable areas of the target system’s RAM and special
memory. You do not have to edit boot . a to change this table; the table
is defined by the MenDef s macro in the syst ype. d file.

/\://& MICROWARE"
The RAM Search

The first part of the search list defines the areas of the address space
where OS-9 should normally search for RAM memory. This reduces the
time it takes for the system to perform the search. It also prevents the
search (and also OS-9) from accessing special use or reserved
memory areas such as I/O controller addresses or graphics display
RAM.

The first entry, or bank, in this list must point to a block of RAM that is at
least long enough for storing system global data and global data for
ROMbug and boot code. This is the area of memory cleared out by Step
4 of the boot . a process. If the system boots from disk or another
device, then this first bank needs to be large enough to hold:

e The system globals
* The global data needed by the ROMbug and boot code
* The size of the bootfile

i Note

Two factors determine the size of the system’s ROM global data space:
* The required stack size.
« The amount of vsect and initialized data space used by the code.

Memory allocated for initialized and vsect data is part of the boot r om
global data area, and thus permanently allocated for boot r om
functions. If a boot driver requires large buffers (for example, disk sector
blocks), they can be dynamically allocated from and returned to the free
memory pool. The CBOOT system provides routines to do this. The
linker executed in r om_i mage. nmake reports the actual required global
data space.

The actual RAM memory search is performed by reading the first four
bytes of every 8K memory block of the areas given in the search list. If a
bus error occurs, it is assumed there is no RAM or special memory in
the block. Then, a test pattern is written and read back. If the memory
changed, the search assumes this was a valid RAM block and is added
to the system free RAM list. As described earlier, you can define the
PARI TY label in the syst ype. d file to initialize memory before any
read is performed. This initialization pattern is $FEEDCODE, in order to
more easily see what RAM was initialized.

The Special Memory Search

The second part, or the special memory part, of the search list is strictly
a non-destructive memory search. This is necessary so the memory
search does not overwrite modules downloaded into RAM or NVRAM.

During the porting process, temporarily include enough RAM (usually
about 64K) in the special memory list to download parts of the boot file.
If this download area has parity memory, you may need to:

e Manually initialize it
» Disable the CPU's parity, if possible
* Include a temporary routine in the sysi ni t . a file

The RAM and special memory searches are performed during Step 14
of the boot . a process.

/5//& MICROWARE"

The Patch Locations

Two globally available patch locations are available for the following
functions:

Table 3-14 Functions with Patch Locations

Name Description

TransFact Thisis a 32-bit location representing the translation
constant between the CPU’s address versus a DMA
device’s address for the same location. The default
value is 0. Boot drivers using DMA should use this
value when passing address pointers to/from the
DMA device.

VBRPat ch This is a 32-bit location you can use to set the VBR of
the 68020, 68030, 68040, and CPU32 processors if
the vectors are to be located at an address other than
the default value of 0.

NOTE: Relocating the VBR is not supported for the
68000, 68008, 68010, and 68070 processors.

For More Information
Refer to Chapter 7: Miscellaneous Application Concerns, for details of
the conditional flags overriding the default values.

The ioxxx and ioyyy Files

Two source files contain very low-level 1/O subroutines to handle the
console I/O port and the communications port.

* The console I/O routines are used by the boot for error messages
and by the debugger for its interactive 1/O.

* The communications port is used for the download and talk-through
functions.

i Note

In this manual, the console I/O routine files are referred to asi 0. xxx
and i 0. yyy. The actual names of these files usually reflect the names
of the hardware interface devices used by the specific target system.
For example, a source file for the Motorola 6850 device is called

i 06850. a, a source file for the Signetics 2661 is called i 02661. a,
and so on.

If your target system uses a common type of 1/0O device, you can
probably use a Microware-supplied file directly or with little modification.
Otherwise, you need to create a new source file using the supplied files
as examples.

i Note

The physical 1/0 port addresses and related information are obtained
from syst ype. d. If the console port and the communications port use
the same type of device, you can use a single, combined file for both.

/\://& MICROWARE"
/O Driver Entry Points

The low level I/O drivers are generally polled drivers allowing
themselves to force themselves onto the port if necessary. The driver
consists of two sides:

* A console side (for connection to an operator’s terminal).

* A communications side (for connection to a host system that
facilitates downloading object files into the target).

These are commonly referred to as the Console port and the Comm
port, respectively.

Many of Microware’s example low-level serial drivers conditionally
assemble entry points and support routines for the console side
separately from the communications side. The ConsType and
Commily pe symbol definitions (in syst ype. d) control this conditional
assembly. Also, whenever possible, the drivers are written to be port
independent (for multi-port devices). The ConsPort and ConmPor t
symbol definitions (in syst ype. d) then direct the driver to a specific
port. These techniques greatly facilitate multi-driver coexistence and
code reuse from one target to another. See Appendix C: Low-level
Driver Flags for the values of these definitions.

The following describes the entry points into the driver:

Table 3-15 1/O Driver Entry Points

Entry Point Description

ChekPort Check Comm Port

ConsDel n Deinitialize Console Port from Polled Mode
Conslnit Initialize Console Port

ConsSet Disable Console Port

Table 3-15 1/O Driver Entry Points (continued)

Entry Point Description

I nChar Read Character from Device’s Input Port
I nChChek Check Console Port

I nPor t Read Character from Comm Port

CQut Char Output Character to Console Device

Qut Por t Output Character on Comm Port

Qut Raw Output Character to Console Device
Port Del n Deinitialize Comm Port from Polled Mode
Portlnit Set Up and Initialize Comm Port

/5?\ MICROWARE"

ChekPor t Check Comm Port
Synopsis
ChekPor t
Input
None
Output
do. | character read or - 1 if no data available
Description

ChekPor t checks the Comm input port to determine if a character is
available to be read, and if so, return the character. If no character is
available, ChekPort must return -1.

This is similar to the | nChChek routine for the Console port.

ConsDel n Deinitialize Console Port from Polled Mode

Synopsis
ConsDel n

Input
None

Output
None

Description

ConsDel n deinitializes the Console port from the polled mode to the
interrupt driven I/O the high level drivers use. The ROM debugger calls
ConsDel n before resuming normal time sharing. Essentially,

ConsDel n should restore the state of the 1/0 device, which the

Consl ni t function saved.

/5?\ MICROWARE"

Consl ni t Initialize Console Port

Synopsis
Conslnit

Input

None

Output
None

Description

Consl ni t initializes the Console port. It should reset the device, set up
for transmit and receive, and set up baud rate/parity/bits per
byte/number of stop bits and desirable interrupts on the device.

Cons Set Disable Console Port

Synopsis
Cons Set

Input
None

Output
None

Description

ConsSet disables the console port from causing interrupts. It is called
each time the debugger is called, but is intended to disable interrupts
from occurring primarily after the system has been booted up and the
system debugger is being used (to trace through system code or when
the br eak utility is called). ConsSet should save the state of the device
so ConsDel n can restore it.

/5//& MICROWARE"

| nChar Read Character from Device’s Input Port
Synopsis
I nChar
Input
None
Output

d0. b character to read

Description

I nChar reads a character from the device’s input port. If a character is
not present, | nChar must loop until one is. After the character is read,
a branch to Qut Char is necessary to echo the character. If the I/O
driver is being written for the obsolete Debug ROM debugger, you need
to convert all lowercase characters to uppercase. The ROMbug ROM
debugger has no requirements.

| nChChek Check Console Port

Synopsis
| NnChChek
Input
None
Output
do. | Character read or - 1 if no data available
Description

I nChChek checks the console input port to determine if a character is
available to be read, and if so, return the character. If no character is
available, | nChChek must return -1.

This is similar to the ChekPor t routine for the Comm port.

/5?\ MICROWARE"

| nPor t Read Character from Comm Port
Synopsis
| nPor t
Input
None
Output

d0. b Character read

Description

| nPort reads a character from the Comm port. If no character is
available, it must wait until one is available.

Qut Char Output Character to Console Device

Synopsis
Qut Char

Input
do. b character to write

Output
None

Description

Qut Char outputs a character to the console device. Before outputting
the character, the input port should be read for an X-Off character. If an
X-Off character is present, Qut Char should delay until the character is
no longer present in the input port. Qut Char also needs to check the
output character to see if it is a Carriage Return (0x0d) character and if
so, output an Line Feed (0Ox0a) character as well.

/5?\ MICROWARE"

Qut Por t Output Character on Comm Port

Synopsis
Qut Por t

Input
do. b character to write

Output
None

Description

Qut Por t outputs a character on the Comm port, without considering
flow control (X-On and X-Off) or carriage return line feed (CR/LF)
combinations.

This is similar to the Qut Raw routine for the Console port.

Qut Raw Output Character to Console Device

Synopsis
Qut Raw

Input
do. b character to write

Output
None

Description

Qut Raw outputs a character to the console device, without considering
flow control (X-On and X-Off) or carriage return line feed (CR/LF)
combinations.

This is similar to the Qut Put routine for the Comm port.

/5?\ MICROWARE"

Port Del n Deinitialize Comm Port from Polled Mode

Synopsis
Por t Del n

Input
None

Output
None

Description

Por t Del n deinitializes the Comm port from a polled mode to an
interrupt driven mode. This is similar to the ConsDel n routine for the
Console port.

Portlnit Set Up and Initialize Comm Port

Synopsis
Portlnit

Input
None

Output
None

Description

Port | nit sets up and initializes the Comm port in the same or similar
way the Consl ni t routine initializes the Console port.

/\://& MICROWARE"
The Sysinit.a File

The sysi ni t. a file contains all special hardware initialization your
system requires after a reset or system reboot. The sysi nit. a file
consists of three different sections, or entry points:

e Syslnit
* SlInitTwo
e UseDebug

The SysInit Entry Point

The first entry point, Sysinit , is called almost immediately after a
reset by boot.a . Syslnit performs any special hardware actions the
system may require during start up. Sysinit needs to do the following:

1. Execute areset instruction to reset all system hardware.

2. Copy the reset stack pointer and initial PC vectors from ROM to
RAM if the system has its vectors in RAM. boot.a initializes the
other vectors.

3. Initialize any devices not connected to the reset line.

4. Initialize any CPU control registers and status displays. Example is
initialization of VBR register.

5. Attempt to locate and execute the extension code
(initext.a/rompak.m) if the ROMPAKInacro is used.

This routine does notreturn via an rts instruction. The return to
boot.a is made directly by a bra SysRetrn instruction.

For More Information

For more information about ROMPAK Irefer to the section on
initext.a

The SInitTwo Entry Point

The second entry point, SI ni t Two, is used for any system initialization
required after the first call. Often, this routine consists of a simplert s

instruction, as most systems can perform all their required initialization
during the first call to Sysl ni t. SI ni t Two is called after boot . a has:

» initialized the vector table (for vectors in RAM) and the exception
jump table

» performed the memory searches

* determined the CPU type

i Note

If any device still needs to be initialized or setup, this is the place to do
it.

If the ROMPAK2 macro is used, it attempts to locate and execute the
extension code associated with the second call tosysi ni t
(ini text.alronpak. m.

To further explain the IRQ control register example from syst ype. d,
you can use the following code segment as an example of writing
Syslnit or Sl nitTwo:

* Initial interrupt control register or bus controller.
nmovea #l RQControl, a0
nove. b #Enabl eAl | , (a0)

The purpose is to make the code more readable. The included
sysi ni t. a files further demonstrate this procedure.

The UseDebug Entry Point

The third entry point, UseDebug, indicates whether the ROM debugger
is enabled. If UseDebug returns the Zer o flag of the CCR as:

» true, the debugger is disabled.

/5//& MICROWARE"

» false, the debugger is enabled.

Often, whether the ROM debugger is enabled is determined by:
* reading the state of a user-configured switch on the system.
» conditioning the Zer o flag accordingly.

If no user-configured switch is available, there are two other methods to
set the Zer o flag:

1. Hard code the UseDebug routine so it always conditions the Zer o
flag to enable/disable the ROM debugger.

2. Test the optional Cal | DBug flag available in boot . a. The least
significant bit of this byte may be used as a flag to indicate whether
the debugger is enabled. The following code fragment shows how to
access and test this flag:

UseDebug: bt st. b #0, Cal | Dbug(pc) test the debug flag
eori.b #Zero,ccr flip Zero (bit 0=0

i ndi cat es enabl ed)
rts

The Syscon.c File

The syscon. c file contains the code needed to build the boot menu
the CBOOT routines present to the console user when boot . a calls the
Sysboot routine. This file contains the routine get boot net hod() that
makes repeated i ni z_boot dri ver () calls to register all boot
drivers the user can initiate.

In addition, get boot net hod() returns an AUTOSELECT or
USERSELECT value to indicate to the CBOOT routines whether the user
should initiate the boot manually or if the CBOOT routines can attempt
an auto-boot. It is typical for this kind of a decision to be made by

get boot net hod() based on either a switch or jumper setting, or
perhaps a value in non-volatile memory.

/\://& MICROWARE"
The ilnitext.a File

The Sysi ni t routines provide the basic initialization functions for the
system. Sometimes you need to provide application specific (for
example, custom hardware that generates an interrupt on power-up)
initialization functions. You can include this type of functionality in the
normal Sysi ni t code or in the initialization extension code, i ni t ext .
Including this code in ani ni t ext (a separate linked object file) allows
greater flexibility for production ROM image building, as you can use a
standardized boot ROM image and i ni t ext modules as building
blocks for tailoring final ROM configurations.

You can use the example sysi ni t. a file in Appendix F as an example
of how to use the i ni t ext macros, ROVPAK1 and ROVPAK2. These
macros are defined in the file SRC/ MACROS/ r onpak. m The i ni t ext
code is activated by placing the i ni t ext routines onto the end of the
boot ROM image, so they are located immediately after the bootROM
image in ROM. Both example makefiles, r onbug. make and r om nake
perform this concatenation.

Putting the ROM Together

You are now ready to begin your port. At this point, you should create
your own specific files and try to make everything into a final ROM
image. Use the example files within this manual as a starting point.

If you have problems when trying to make your image, such as
assembler or linker errors, you need to:

1. Verify syst ype. d is configured correctly.

2. Verify sysi ni t. a is referencing the labels within syst ype. d
correctly.

3. Make sure the makefile has the correct names of your customized
files (i oxxx. aandi oyyy. a).

After the files have been assembled and linked properly, you can make
a ROM or load the code into the emulator overlay memory.

i Note

The linker output is a pure binary file. If your PROM programmer or
emulator requires S-records, use the bi nex command to convert the
data.

If your PROM programmer cannot burn more than one 8-bit wide PROM
at a time and your system has the ROMs addressed as 16-bit or 32-bit
wide memory, use the r onspl i t utility to convert the ROM object
image into 8-bit wide files.

For More Information

Refer to the Utilities Reference manual for information about using
romsplit.

/5//& MICROWARE"

After you have installed the ROM code and powered up the system, you
should see the following message on the terminal:

0S- 9/ 68K Syst em Boot strap

A register dump and a debugger prompt should follow. If the debugger
did not come up, you must carefully review the previous steps.
Particularly, review:

* The primitive 1/0O code

* The memory definitions in syst ype. d and sysinit. a
* The terminal connections

* The baud rate selections

Chapter 4: Step Two: Bringing Up the

Kernel and Console I/O

This chapter includes the following topics:

Preparing the First Stage OS-9 Configuration
Creating the Init Module

Creating a Console I/O Driver

Preparing the Download File

Downloading and Running the System

Cold Part of Kernel

Debugging Hints

Aﬂ MICROWARE"

/\://& MICROWARE"
Preparing the First Stage OS-9 Configuration

In the second step of the porting process, you actually load and run the
0S-9 system. Because you are now at the OS-9 system level, you are
dealing with the OS-9 modules.

Most of the OS-9 modules needed for the OS-9 system are already
supplied. For a basic OS-9 system, use the following modules:

ker nel scf

I oman Sysgo

ci o (recommended) shell

csl mat h (recommended)

f pu (f psp040 if you are porting to 68040)

Because these modules are supplied ready to run, you can burn them
into ROM within a special memory area.

To complete this step of the port, you need to make or create three
other modules within the | Odirectory:

Table 4-1 10 Directory Modules

Name Description
I nit The kernel’s configuration data module.
Term A descriptor for a high level console serial driver.

SCXXX High level console serial driver.

i Note

As with the low level i oxxx. a drivers, the scxxx signifies a specific
high level driver. For example, sc6850 is the high level driver for the
6850 serial device.

i Note

The | Odirectory contains the source to the high level drivers and
descriptors.

To create these three modules, you need to:
* Expand the syst ype. d file.
» Create a makefile within the | Odirectory.

As with the low level i oxxx driver, there are several source code
supplied, high level scxxx drivers with the package as well. Also,
configuration labels for the scxxx driver needs to be defined in
syst ype. d. Check the high-level driver sources in

SRC/ | O SCF/ DRVR for the configuration labels applicable to your
selected driver.

i Note

The I ni t module must be within the same bank of special memory as
the kernel. Otherwise, the kernel is not able to find the | ni t module.
The serial driver and descriptor can be loaded into a RAM special
memory bank for debugging purposes.

When the OS-9 system is running, you can include some standard
OS-9 utilities, such as nf r ee and ndi r, in your special memory areas.

/\://& MICROWARE"
Creating the Init Module

Within the syst ype. d file is a section called CONFI G which is
commonly referred to as the CONFI G macro. Within this CONFI Gmacro
is all the configuration values and labels assembled and linked into the
I ni t module. The example syst ype. d file from Appendix F:
Example ROM Source and Makefiles has an example CONFI Gmacro.
You can modify this for your particular system. The following are the
basic variables within the CONFI Gmacro:

Table 4-2 CONFIG Macro Variables

Name Description

Mai nFram A character string used by programs such as | ogi n
to print a banner identifying the system. You may
modify the string.

SysStart A character string used by the OS-9 kernel to locate
the initial process for the system. This process is
usually stored in a module called sysgo. Two general
versions of sysgo have been provided in the files:

* sysgo. a (for disk-based OS-9).
* sysgo_nodi sk. a (for ROM-based 0S-9).

SysParam A character string passed to the initial process. This
usually consists of a single carriage return.

SysDev A character string containing the name of the path to
the initial system disk. The kernel coldstart routine
sets the initial data directory to this device before
forking the SysSt art process. Set this label to O for
a ROM-based system. For example, SysDev set O.

Table 4-2 CONFIG Macro Variables (continued)

Name Description

Consol Nm A character string containing the name of the path to
the console terminal port. Messages to be printed
during start up appear here.

Cl ockNm A character string containing the name of the clock
module.
Ext ens A list of OS9P2 modules the kernel executes before

the system is running. For the initial port, this field is
not necessary. However, it must be defined or you get
linker errors.

For More Information
For more information about the | ni t module, refer to the OS-9 for 68K
Technical Manual.

To change the | ni t module’s default values once the port is complete,
you can define these changes within the CONFI Gmacro. Refer to the

i ni t.a source file (located in the SYSMODS directory) to see what
symbolic labels are used for which | ni t parameters. This allows you to
tune your system without modifying the generici ni t. a file.

/5//& MICROWARE"

SCF Device Descriptor Macro Definitions

The SCF device descriptor macro definitions are used when creating
SCF device descriptor modules. Seven elements are needed:

Table 4-3 Elements of SCF Device Descriptor Modules

Name

Description

Port

Vect or

| RQLevel

Priority

Parity

Address of Device on Bus
Generally, this is the lowest address the device has
mapped. Por t is hardware dependent.

Vector Given to Processor at Interrupt Time
Vect or is hardware/software dependent. Some
devices can be programmed to produce different
vectors.

Interrupt level (1 - 7) for Device

When a device interrupts the processor, the level of
the interrupt is used to mask out lower priority
devices.

Interrupt Polling Table Priority

Priority is software dependent. A non-zero
priority is used to determine the position of the
device within the vector. Lower values are polled
first. Apriority of O indicates the device desires
exclusive use of the vector.

Parity Code for Serial Port

This code sets up the parity number of bits per
character, and the number of stop bits for the serial
port. This code is explained fully in the SCF section
of the OS-9 for 68K Processors I/O Technical
Manual.

Table 4-3 Elements of SCF Device Descriptor Modules (continued)

Name Description

BaudRat e Baud Rate Selection for Serial Port
This is the baud rate for the serial port. This code is
explained fully in the SCF section of the OS-9 for
68K Processors I/O Technical Manual.

Driver Name Module Name of Device Driver
This name is determined by the programmer and is
used by the 1/0 system to attach the device
descriptor to the driver.

Along with the I ni t module, you can add the TERMdescriptor to the
makefile.

Note

0OS-9 does not allow a device to claim exclusive use of a vector if
another device has already been installed on the vector, nor does it
allow another device to use the vector once the vector has been
claimed for exclusive use.

The driver uses these values to determine the parity, word length, and
baud rate of the device. These values are usually standard codes
device drivers use to access device specific index tables. These codes
are defined in the OS-9 for 68K Technical Manual.

/\://& MICROWARE"
Creating a Console I/O Driver

You must create an OS-9 driver module for the console device. There is
a good chance Microware has an existing driver based on the same
device your target system uses. If this is the case, the set up of the
proper configuration labels within the syst ype. d file for the device is
all that is required.

Otherwise, you must create a new driver module. The easiest way to
create a new driver module is to modify an existing Microware-supplied
serial driver.

For More Information

Refer to the OS-9 for 68K Technical Manual, the OS-9 for 68K
Technical I/0 Manual, and the sample source files supplied for
guidance.

Along with the | ni t module and the t er mdescriptor, you can also add
the serial driver to the makefile.

Once the | ni t module, t er mdescriptor, and serial driver have been
made, an i dent on each module should be performed to verify the
module owner is 0. 0. If it is not, the f i xnod utility should be run on the
module(s) with the - u=0. 0 option. This changes the module owner to
0. 0.

For More Information
Refer to the Utilities Reference manual for more information about
i dent and fi xnod.

Preparing the Download File

Step 1.

Step 2.

Step 3.

After you are confident the console device driver and descriptor
modules are in good shape, you can prepare a download file:

Merge each of the binary files of the OS-9 modules into a single file.
The order they are merged in is not important; however, by convention,
the ker nel s first.

Note

I ni t needs to be set up to be ROM-based. Therefore, set MBSy sDev
to zero.

ker nel I nit f pu (or f psp040)
sysgo shel | ci o (recommended)
csl scf mat h (recommended)

Merge two new modules into a second file:

serial .driver
term descri ptor

Note
Actual file names vary according to I/O controller names.

Convert the two binary files to S-record files using the bi nex utility. If
your version of bi nex asks for a load address, use zero.

/5//& MICROWARE"

For More Information
Refer to the Utilities Reference manual for more information about
bi nex.

We recommend you make, download, and bi nex the two groups of
files separately. This saves a lot of downloading time. You can keep the
0S-9 standard modules in RAM and just download the driver/descriptor
file by itself whenever it changes.

You can also merge the first set of files into the boot ROM image.
Wherever you put or load these modules, verify the memory area is
defined in the special memory list and not in the RAM list.

Downloading and Running the System

You are now ready to download OS-9 to the target system and (attempt)
to run it using the following procedure.

For More Information
Refer to the Using RomBug for more information on setting the
relocation register and downloading S-Records.

ROMbug has the ability to stage the boot in what we call boot stages.

Boot stages consist of breaking during the boot process twice in order
to help verify everything is all right. The first of the two breaks occur in
boot . a, just before boot . a jumps to the kernel. Here, the registers
can be investigated to verify they are all right before continuing. The
second of the two breaks is within the col dst art () routine of the
kernel. At this point, the module directory has been completed, and
modules needing to be debugged can have break points inserted at this
time.

At each of the two breaks in boot stages, ROMbug displays the
registers and gives a prompt.

At each Ronbug: prompt, enter gb.

The following explains the procedure to download system modules to
special memory areas.

mf— Note

Download OS-9 to the special memory area only. Use the following
procedure directly after a reset (at the first prompt).

Only do both steps 1 and 2 if you are downloading the standard system
modules. If these modules are in ROM, skip to step 3.

/5//& MICROWARE"

Downloading and Running the System

Step 1.

Step 2.
Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

To download and run the system:

Set ROMbug's relocation register to the RAM address where you want
the system modules (such as the kernel) loaded.

Download the system modules. Do not insert breakpoints yet.

Set ROMbug'’s relocation register to the RAM address where you want
the console driver and descriptor loaded. The size of this code varies
from less than 1K to as much as 2K. Be careful not to overwrite the
system modules.

Download the console driver and descriptor modules. Do not insert
breakpoints yet.

Type gb for RomBug to start the sysboot kernel search. This starts
boot stages. If all is well, you should see the following:

Found OS-9 Kernel nodule at $XXXXXXXX

This is followed by a register dump and a ROMbug prompt. If you do not
see this message, the system modules were probably not downloaded
correctly or were loaded at the wrong memory area.

Type gb again. This executes the kernel’s initialization code including
the OS-9 module search. You should see another register dump and
ROMbug prompt.

If you are debugging I/O drivers and want to insert breakpoints, do so
now.

Type gb again. This should start the system. If all is well and a
breakpoint was not encountered first, you should see the following
display:

Shel |
$

If the shell does not come up, see the next section for debugging
instructions.

Step 9. If you included some utilities (such as nf r ee and ndi r), you can run
them.

Go to Chapter 5: Step Three: Creating Customized 1/0O Drivers and
Finishing the Boot Code if the system seems to work properly.

/5//& MICROWARE"

Cold Part of Kernel

The kernel uses a routine called col dstart () to boot itself. Before
col dstart () can run properly, boot . a must pass it the following
information:

1.

Total RAM found by boot ROM.
This is an unsigned integer value of the total amount of ROM
boot . a found.

The processor (or MPU) type.
This is the processor number (68000, 68010, ... 68040) as
determined by boot . a.

System debugger active flag.
This unsigned character is non-zero if you have selected to boot by
boot stages.

Warmstart flag.
This unsigned character is the growth method determined by
boot . a.

For More Information

Refer to The Boot.a File section in Chapter 3: Step One: Porting the
Boot Code, for more information about the available growth methods.

5.

The ROM entry point.
This is a pointer to the Reset : flag in boot . a. The kernel uses this
pointer if it ever reboots itself.

The RAM list.
This is the RAM list found by boot . a. This RAM list has the
following structure:

struct dunmbrmem {
struct dunmbmem *ptr; /* ptr to next free block */
u_int32 size; /* size of this block */

}

Multiple blocks are defined by adjacent structures together. A NULL
pointer terminates the RAM list.

7. Exception jump table pointer.
This is a pointer to the exception jump table for which boot . a set up
RAM space.

8. The ROM list.
This is the area of ROM found by boot . a. Its memory structure is
the same as the RAM lists.

The coldstart() Routine

Step 1.

Step 2.

Step 3.

Step 4.

With the preceding parameters, col dst art () performs the following
steps:

Fill in default values into the system globals.
The kernel or system global variables are assigned default values in
this step.

Determine if this is the correct kernel for the processor.

The kernel checks the value boot . a determined the processor to be
with an internal value with which the kernel was made. This determines
if it is the correct kernel for the processor.

Set up system exception jump table.

The kernel fills in the jump addresses in the exception jump table.
Boot . a allocated space for the exception jump table and filled in the
code to push the exception addresses. However, it does not know at the
time what address the kernel will be at.

Locate Init module.

col dstart () searches for the | ni t module in the same bank of
memory in which the kernel resides. Once | ni t is found, system
parameters are copied from it and put into the system globals.

/5//& MICROWARE"

Step 5. Allocate and initialize system process descriptor, initial module
directory, and dispatch table.
Memory for these tables are allocated and initialized. The system
service routines are installed into the kernel at this time.

Step 6. Find system RAM.
col dstart () searches RAM and builds the kernel's free memory list.
Either the RAM boot . a found is verified or the colored memory list, if
defined, is used instead. Both pattern matching and bus error is used to
verify RAM.

Step 7. Search ROM list for modules.
col dstart () builds the module directory from the ROM list boot . a
found and from any colored memory having an attribute of B_ ROM

Step 8. Call the ROM debugger.
The system debugger flag parameter passed to col dstart () from
boot . a is checked. If it is set, col dst art () calls the ROMbug. This
allows you to set breakpoints to aid in the debugging of drivers for
applications.

Step 9. Allocate memory and initialize system tables.
col dstart () allocates memory and initializes the system tables.
These tables include the process descriptor table, IRQ polling table,
device table, and path descriptor table. This step also includes setting
up the alternate IRQ stack and moving the system stack pointer to the
system process descriptor.

Cold2(): Bringing Up the System the Rest of the Way

At this point, the kernel is fully functional. col dst art () next calls a
routine called col d2() to bring the system the rest of the way up.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

The col d2() routine performs the following steps:

Enable IRQs.

This part enables the IRQs that boot . a disabled. This is necessary
because the following steps include the initiation of devices that may
need IRQs enabled.

Execute Pre-IO modules.
col d2() executes any modules defined in the Pre-/Olistin the | ni t
module.

Execute IOMan modules.

col d2() executes any modules defined in the /IOMan list in the | ni t
module. The default IOMan module supplied by Microware does the
following:

* Initialize the system console.

The system console (usually specified as / t er) is opened. Any
errors resulting from the open are displayed as the message:

“can’t open console term”

The M$Consol field in the Init module specifies what the console
device name is. The label ConsolINm from the systype.d file sets
M$Console .

* Initialize the system device.
IOMan performs a chd to the system device which initializes the
device. The system device is obtained from the MbSysDev field in
the I ni t module, and the SysDev label in the syst ype. d file sets
MBSy sDev.

Execute custom modules.
col d2() executes any modules defined in the Ext ens listin the I ni t
module. These are commonly referred to as P2 modules.

Fork initial process.

The MBSy s Co field is the name of the first executable module. col d2()
forks the initial process with any parameters defined in the MbSPar am
field of the | ni t module. The SysSt art label in syst ype. d sets up
MBSy s Go, and the SysPar amlabel sets up MbSPar am

/5?\ MICROWARE"

Step 6. Start the system clock.
If specified in the MbConpat field of the | ni t module, col d2() starts
the system clock and ticker.

Step 7. Call the kernel.
col d2() exits by calling the main part of the kernel itself. At this point,
the system is fully booted and operating.

Debugging Hints

If OS-9 does not come up, the system may have one of these common
problems:

* The system download file is missing a module or modules.

* The download files were improperly downloaded or the second
download file (the driver) overwrote the first.

» The console driver has serious bugs.

» The console descriptor module is not set up correctly or it was
forgotten.

* There is a hardware problem related to interrupt (exception)
processing.

* The manager, driver, and descriptor modules ownership is not in the
super group (0.n).

The most likely problem is a defective driver module. This requires
actual debugging work. The best way to debug the driver is to repeat the
procedure outlined previously (in the section entitled Downloading and
Running the System), putting breakpoint(s) at the entry points in the
driver's | NI T, GETSTAT, SETSTAT, and WRI TE routines in step 8. You
can then trace through the driver as it initializes the hardware and tries
to print the shell message. If the system never reaches this point,
problems (a), (b), or (d) are likely.

i Note

If you suspect serious problems related to interrupts and extensive
debugging efforts are not fruitful, try making and running a non-interrupt
driven version of the driver. This can definitively isolate the problem if it
is interrupt-related. After the simpler version is debugged, you can add
the interrupt logic.

4 Step Two: Bringing Up the Kernel and Console 1/0 Aﬂ MICROWARE"

120 0S-9 for 68K Processors OEM Installation Manual

Chapter 5: Step Three: Creating
Customized I/O Drivers and Finishing
the Boot Code

In this step, you produce a version of OS-9 that has ticker drivers,
Real-Time clock drivers, disk drivers, and uses a bootstrap to boot OS-9
from a disk.

i Note

If the target system is to be ROM-based and without disk support, skip
the sections on Creating Disk Drivers.

This chapter includes the following topics:

* Guidelines for Selecting a Tick Interrupt Device
e 0OS-9Tick Timer Setup

» Tick Timer Activation

» Real-Time Clock Device Support

* Microware Generic Clock Modules

» Using Generic Clock Modules

* Automatic System Clock Startup

» Creating Disk Drivers

» Creating and Testing the Disk Boot Routines

 Completing the System

ﬁﬂ MICROWARE"

/5//& MICROWARE"

Guidelines for Selecting a Tick Interrupt
Device

The interrupt level associated with the timer should be as high as
possible. Level 6 is recommended. A high interrupt level prevents ticks
from being delayed and/or lost due to interrupt activity from other
peripherals. Lost ticks cause the kernel's time-keeping functions to lose
track of real-time. This can cause a variety of problems in processes
requiring precise time scheduling.

The interrupt service routine associated with the timer should be able to
determine the source of the interrupt and service the request as quickly
as possible.

OS-9 Tick Timer Setup

You can set the tick timer rate to suit the requirements of the target
system. You should define the following variables:

Ticks Per Second

This value is derived from the count value placed in the tick timer’s
hardware counter. It reflects the number of tick timer interrupts
occuring each second. Most systems set the tick timer to generate
100 ticks per second, but you can vary it. A slower tick rate makes
processes receive longer time slices, which may make multitasking
appear sluggish. A faster rate may burden the kernel with extra
task-switching overhead due to more rapid swapping of active tasks.

Ticks Per Time Slice

This parameter is stored in the | ni t module’s MBSI i ce field. It
specifies the number of ticks that can occur before the kernel
suspends an active process. The kernel then checks the active
process queue and activate the highest priority active task. The

I ni t module sets this parameter to a default value of 2, but this can
be modified with the CONFI Gmacro (in the system’s syst ype. d
file) by setting the Sl i ce definition to the desired value.

Tick Timer Module Name

The name of the tick timer module is specified in the | ni t module.
Use the G ockNmentry in the syst ype. d file’s CONFI G macro to
define this name. For example:

ClockNmdc.b "tk147",0 tick nodul e nane

/\://& MICROWARE"
Tick Timer Activation

You need to explicitly start the tick timer to allow the kernel to begin
multitasking. This is usually performed by the set i ne utility or by a
F$STi me system call during the system startup procedures.

For More Information

Refer to the Utilities Reference manual for information about using
set i nme or the OS-9 for 68K Technical Manual for information about
F$STi ne.

When F$STi e is called, it attempts to link to the clock module name
specified in the | ni t module. If the clock module is found, the module’s
entry point is called to initialize the tick timer hardware.

An alternative is to clear bit 5 of the compatibility flag in the i ni t
module. If this bit is cleared, the kernel automatically starts the tick timer
during the kernel’'s cold start routine. This is equivalent to a seti ne

- S.

Real-Time Clock Device Support

Real-time clock devices (especially those equipped with battery
backup) allow the real-time to be set without operator input. OS-9 does
not explicitly support the real-time functions of these devices, although
the system tick generator may be a real-time clock device.

The real-time functions of these devices are used with the tick timer
initialization. If the system supports a real-time clock, the tick timer code
should be written so the real-time clock is accessed to read the current
time or set the time after the ticker is initialized. When F$STi ne’s

nont h parameter is 0, a call is made to read the current time. When the
nmont h parameter is not 0, the new time is set in the real-time clock
device.

For More Information

Refer to the OS-9 for 68K Technical Manual for information about
F$STi nme.

/5//& MICROWARE"

Microware Generic Clock Modules

To allow maximum flexibility for mixing the various types of tick timer
devices and real-time clock devices, and to simplify the implementation
of system clock functions, Microware has developed a suite of routines
called the generic clock routines.

These routines are located in the MAOS/ OS9/ SRC/ SYSMODS/ GCLOCK
directory. They provide three separate levels of support:

» Tickgeneric support
» Ticker support
* Real-time clock support

Tickgeneric Support

Step 1.
Step 2.

Step 3.

Theti ckgeneri c. a file performs all common functions for tick and
real-time clock initialization. This routine is the main body of the clock
system, and it uses the following algorithm:

Test if system clock is running. If so, then skip tick timer initialization.
Initialize the tick timer:

» Set the system’s ticks per second value (D_TckSec).

e Add the tick timer to the system interrupt polling table.

» Call the tick timer’s initialization routine.

Attempt to link to a module called r t cl ock.

i Note

You should never need to modify this code because all system specific
functions are concentrated in the ticker and real-time clock portions of
the generic clock system.

Step 4. Ifthertcl ock moduleis:
* not found, then return:
» without error if the caller is setting the time explicitly.
* an error if the caller is asking to read the real time clock.
» is found, then call the module’s:
* seti ne entry if the caller is explicitly setting the time.
» geti ne entry if the caller is reading the current time.

Ticker Support

The tick functions for various hardware timers are contained in the
t kXXX. a files. There are two ticker routines:

» Tick initialization entry routine
This routine is called by t i ckgener i ¢ and enables the timer to
produce interrupts at the desired rate.

» Tick interrupt service routine
This routine services the tick timer interrupt and calls the kernel’'s
clock service routine.

/5//& MICROWARE"

i Note

The ticker module name is user-defined and should be included in the
| ni t module.

The t kKXXX. aand the ti ckgeneri c. a files are linked together as a
single t kXXX module.

Real-Time Clock Support

The real-time clock functions for various real-time clock devices are
contained in the r t cXXX. a files. The two real-time clock routines are:

Get time Reads the current time from the
real-time clock device.

Set time Sets the current time in the real-time
clock device.

Under the generic clock system, the real-time clock module is always a
subroutine module called r t cl ock.

Using Generic Clock Modules

Step 1.
Step 2.

Step 3.

Step 4.

To create system clock modules:

Determine the type of tick device to use for the system.
Examine the MAOS/ OS9/ SRC/ SYSMODS/ GCLOCK directory.

» Ifan existing t KXXX. a file supports the system’s tick device, this file
is the system’s tick module.

» If none of the files are appropriate, create a tick module by using an
existing version as a model.

Examine the existing r t cXXX. a files in the GCLOCK directory if the
system requires real-time support.

» Ifartcxxx. a file supporting the tick device already exists, this file
is the system’s real-time clock module.

» If none of the files are appropriate, create a real-time clock module
by using an existing version as a model.

Edit the system’s syst ype. d file so the following variables describe
the system’s clock configuration:

Table 5-1 Clock Configuration Variables

Variable Description

A kVect : Tick timer vector.

Cl kPrior: Tick timer priority on vector (should be highest).
Cl kPort : Tick timer base address.

Ti cksSec: Ticks per second (usually 100).

Step 5.

Step 6.

Step 7.

Step 8.
Step 9.

/5//& MICROWARE"

Table 5-1 Clock Configuration Variables (continued)

Variable Description

G kLevel : Tick timer IRQ level (may not be required if timer is at
fixed IRQ level).

RTCBase: Real-time clock device address (if using a real-time
clock).

Set up the | ni t module’s CONFI G macro to reflect the tick module
name and the system ticks per time slice value. For example,

ClockNmdc.b "tk147",0
Tick module name

Slice set 4 Ticks/slice (default is 2 if this field is not
specified)

Create a makefile specifying the system’s tick module and, if necessary,
real-time clock. Use the example makefile, makefi | e, in the GCLOCK
directory as a model.

Make the tick module and, if necessary, real-time clock with the make
utility.

Make the | ni t module.

Create a bootfile for the system to include the new | ni t module, tick
module, and, if necessary, real-time clock module.

Philosophy of Generic Clock Modules

Step 1.
Step 2.
Step 3.

Using generic clock modules has proven to be a successful, flexible
method for tailoring OS-9 clock functions to a variety of hardware
configurations. The following is a partial list of the benefits of using
generic clock modules:

* You only need to write the hardware specific portions of the tick timer
code.

* If you want real-time clock support, you only need to write the
hardware-specific portions of the code.

* The real-time clock module is only essential to system operation if
F$STi ne system calls are made requiring reading the real-time
clock. This allows the real-time clock code to be developed
independently of the tick timer code.

* You can change the real-time clock hardware without modifying the
tick timer code. To use a different real-time clock device:

Create the new module.
Replace the old real-time clock module in the bootfile with the new one.
Re-boot the system.

/\://& MICROWARE"
Automatic System Clock Startup

The kernel can automatically start the system clock during its coldstart
initialization. The kernel checks the | ni t module’s MbConpat byte at
coldstart. If the NoCl ock bit is clear (bit 5 = 0), the kernel performs a
F$STi me system call with the mont h parameter equal to O to start the
tick timer and set the real time.

This automatic starting of the clock can pose a problem during clock
driver development, depending on the state of the real-time clock
hardware and the modules associated with the tick timer and real-time
clock. If the system software is fully debugged, you should not
encounter any problems.

The following are three common scenarios and their implications:

1. The system has a working tick module, but no real-time clock
support.
If the NoCl ock bitinthe | ni t module’s MbConpat byte is clear, the
kernel performs the F$STi e call. The tick timer code is executed to
start the tick timer, but the tick module returns an error because it
lacks real-time clock hardware.

The system time is invalid, but time slicing occurs. You can correctly
set the real time once the system is up. For example, you could run
set i me from the startup file.

2. The system has a working tick module and real-time clock
support.
If the NoCl ock bitinthe | ni t module’s MbConpat byte is clear, the
kernel performs the F$STi e call. The tick timer code is executed to
start the tick timer running and the real time clock code is executed
to read the current time from the device.

If the time read from the real-time clock is valid, no errors occur and
system time slicing and time keeping function correctly. You do not
need to set the system time.

If the time read from the real-time clock is not valid, the real-time
clock code returns an error. (This could occur if the battery back-up
malfunctions.) The system time is invalid, but time slicing occurs.
You can correctly set the real time once the system is up.

3. The system does not have a fully functional/debugged tick
timer module and/or real-time clock module.
In this situation, executing the tick and/or real-time clock code has
unknown and potentially fatal effects on the system. To debug the
modules, prevent the kernel from performing a F$STi ne call during
coldstart by setting the NoCl ock flag in the | ni t module’s
MbConpat byte (bit 5 = 1). This allows the system to come up
without the clock running. Once the system is up, you can debug the
clock module(s) as required.

Debugging Clock Modules on a Disk-Based System

-

Step 1.

Step 2.
Step 3.
Step 4.
Step 5.

Step 6.

Note
Microware highly recommends you exclude the clock modules from the
bootfile until they are fully operational.

To debug the clock modules:

Make the | ni t module with the NoCl ock flag in the MbConpat byte
set.

Exclude the module(s) to be tested from the bootfile.
Bring up the system.
Load the tick/real-time clock module(s) explicitly.

Use the system state debugger or a ROM debugger to set breakpoints
at appropriate places in the clock module(s).

Run the set i e utility to access the clock module(s).

Step 7.

Step 1.
Step 2.

Step 3.

/5//& MICROWARE"

Repeat steps 5 to 6 until the clock modules are operational.

When the clock module(s) are operational:

Remake the | ni t module so the NoCl ock flag is clear.

Remake the bootffile to include the new | ni t module and the desired
clock module(s).

Reboot the system.

Debugging Clock Modules on a ROM-Based System

Step 1.

Step 2.

Step 3.
Step 4.

For ROM-based systems there are two possible situations:

» If the system boots from ROM and has disk support, you should
exclude clock module(s) from the ROMs until they are fully
debugged. They can be debugged in the same manner as for
disk-based systems.

» If the system boots from ROM and does not have disk support, you
should exclude the clock module(s) from the ROMs and download
them into special RAM until they are fully debugged. Downloading
into RAM is required so you can set breakpoints in the modules.

To debug the clock modules:

Make the | ni t module with the NoCl ock flag in the MbConpat byte
set.

Program the ROMs with enough modules to bring the system up, but do
not include the clock module(s) under test.

Power up the system so it enters the ROM debugger.
Download the module(s) to test into the special RAM area.

Step 5.
Step 6.

Step 7.
Step 8.

Step 1.
Step 2.

Step 3.

Bring up the system completely.

Use the system state debugger or ROM debugger to set breakpoints at
appropriate places in the clock module(s).

Run the set i e utility to access the clock module(s).
Repeat steps 6 to 7 until the clock modules are operational.

When the clock module(s) are operational:

Remake the | ni t module so the Nod ock flag is clear.

Remake the bootfile to include the new | ni t module and the desired
clock module(s).

Reboot the system.

/\://& MICROWARE"
Creating Disk Drivers

You should now create a disk driver for your target system. This is

similar to creating a console terminal driver as in the previous step.
However, disk drivers are more complicated. Again, you can use a
Microware-supplied sample disk driver source file as a prototype.

For More Information
Refer to the OS-9 for 68K Processors I/O Technical Manual for
further information about disk drivers.

If the target system has both floppy disks and hard disks, you should
create the floppy disk driver first, unless they both use a single
integrated controller. You can create the hard disk driver after the
system is up and running on the floppy.

You must have a test disk of the correct type with OS-9 formatting. If you
are using:

« an 0OS-9 based host system, this is no problem because you can
make test disks on the host system.

e across-development system (Windows), you should obtain sample
pre-formatted disks from Microware.

We recommend you make a non-interrupt driver for the first time. This
can make your debugging task easier. Make a new download file that
includes the disk driver and descriptor modules along with one or two
disk-related commands (such as di r and f r ee) for testing. If you are
using the ROMbug ROM debugger, include the driver’'s.. st b module for
easier debugging.

You can add the previously tested and debugged console driver and
descriptor modules to your main system boot at this time. This
minimizes download time as in the previous step.

Testing the Disk Driver

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Test the disk driver using the following procedure:

After a reset, set the debugger’s relocation register to the RAM address
where you want the system modules (now including the console driver)
loaded.

Download the system modules. Do not insert breakpoints yet.

Note
Steps 1 and 2 are not necessary if the system modules are in ROM.

Set the debugger’s relocation register to the RAM address where you
want the disk driver and descriptor loaded. Ensure this address does
not overlap the area where the system modules were previously
loaded.

Download the disk driver and descriptor modules. Do not insert
breakpoints yet.

Type gb to start the sysboot kernel search. If all is well, the following
message appears:

Found GS-9 Kernel nodul e at $XXXXXXXX

This is followed by a register dump and a ROMbug prompt. If you do not
see this message, the system modules were probably not downloaded
correctly or were loaded into the wrong memory area.

Type gb again. This executes the kernel’s initialization code including
the OS-9 module search. You should get another register dump and
debug prompt.

If you want to insert breakpoints in the disk driver, do so now. This is
greatly simplified by attaching to the driver.

Step 8.

Step 9.

/5//& MICROWARE"

Type gb again. This should start up the system. If all is well and a
breakpoint was not encountered first, you should see the following
display:

Shell $
Insert a diskette correctly formatted for OS-9 in the drive and try to run
the di r utility. If this fails, begin debugging by repeating this procedure

with breakpoints inserted in the driver’'s | NI T, GETSTAT, SETSTAT, and
READ routines during step 8.

Creating and Testing the Disk Boot Routines

Step 1.

Step 2.

Step 3.

After creating and debugging the basic disk driver, you must create a
simple disk boot routine. You may use the sample assembler

boot xxx. a files as prototypes or write a C Boot driver. To use a C Boot
driver, refer to Appendix A: The CBoot Technology. However, finish
reading this section for needed instructions before continuing.

The basic function of the disk boot routine is to load from a system disk
a file called OS9Boot , containing the OS-9 component modules.
OS9Boot is created and specially linked on the system disk by the
os9gen utility. The system disk almost always has a CVDS directory
containing the OS-9 standard command set.

For More Information
The os9gen utility builds and links the OS9Boot file. Refer to the

Utilities Reference manual for more information about how os9gen
creates the OS9Boot file.

The main operations of the disk boot subroutine (in order) are:

Read logical sector zero which contains the bootstrap pointers of the
OS9Boot file. These values are available at offsets DD _BT and
DD _BSZ.

These variables contain:

» the logical sector number of the location of the OS9Boot file
(DD _BT) on the disk

» the size of the bootfile (DD_BSZ) itself

Call the boot code’s memory request routine to obtain memory to hold
the OS9Boot file.

Read the OS9Boot file into memory.

Step 4.

Step 1.

Step 2.

Step 3.

/5//& MICROWARE"

Place the address and size of the loaded OS9Boot data into the OS-9
initial ROM search table. The size returned should be the actual bootfile
size, not the size rounded up to the next sector.

For More Information
If using CBoot , these four operations are performed automatically by
the di skboot . ¢ routine. See Appendix A: The CBoot Technology.

To test and debug the disk boot routines, you must perform the following
steps:

Prepare a bootable OS-9 system disk containing the system OS-9
modules. This disk should have an OS9Boot file that includes all the
modules you have been downloading, including the new disk driver and
descriptor module.

Create a bootable OS-9 system disk. The method you use depends on
if your host system is an OS-9 system or a hon-OS-9 system.

* Ifyour hostis an OS-9 system and has the same size floppy disks as
the target (if not, use the same procedures as a non-OS-9 system)
format a floppy and use the os9gen ultility to create the OS9Boot file
on it. You can use the same modules as your r onboot file.

» If your host is a non-OS-9 system, your target system needs to
format the floppy and put the bootfile onto the floppy by using
os9gen.

Before using 0s9gen, all of the modules needed for the OS9Boot file
must reside on a disk somewhere, either in a RAM disk or on the floppy
itself. Put these modules on disk by using either the save utility to save
them from memory to the disk or using ker m t to transfer the modules.
Once these modules are on the disk, use the os9gen utility to make the
floppy a system disk.

Step 4.

Create a low level disk boot driver. To debug this low level boot driver,
use the ROMbug ROM debugger. The C Boot routines and the low level
driver are linked into a ROM image and tested. (The procedure to
debug or test is explained later in this chapter).

The rom_ i mage. make file needs to be modified to include this low
level boot driver in the FI LES macro. Also, you need to modify
syscon. ¢ to add a menu item to start up your new low level disk boot
driver. See the files 68020/ PORTS/ M\WME147/ SYSCON. C and
68020/ PORTS/ WMEL47/ RECONFI G. Cfor examples of how this is
done.

Testing the CBoot Disk Boot Module

Step 1.

Step 2.

Step 3.

Step 4.
Step 5.
Step 6.

Step 7.

The following procedure tests and debugs the C Boot disk boot module:

Merge the . st b file to the end of the ROM image by uncommenting the
RBGSTB macro in r onbug. make prior to making the image.

Once the image is burned into the eprom and installed in your target,
turn the system on and get to Ronbug prompt.

ROMbug automatically finds and attaches to the symbol table
information within the . st b file

Type or to enable soft breakpoints.
Set up any needed breakpoints within the boot code.

Type gb. If all goes well, the CBoot routines should now read the
OS9Boot file from the disk into RAM, unless a breakpoint was
encountered first. Afterward, you should get another register dump and
a ROMbug prompt.

At this point, you can use the ROM debugger's memory dump
command to display the modules loaded by the CBoot routine.

Step 8.

Step 9.

/5//& MICROWARE"

Type gb again. This executes the kernel’s initialization code including
the OS-9 module search. You should get another register dump and
ROMbug prompt. At this point, you should verify the entire OS9Boot file
was loaded and all modules within it found. To do this, follow the steps
listed in Searching the Module Directory from Appendix B: Trouble
Shooting.

Type gb again. This should start up the system. If successful, the
following message appeatrs.

shell $

If the shel | $ prompt does not appear, your target system’s module is
probably bad. For example, files may be missing or OS9Boot is missing
required modules. You should go through the normal procedures for
debugging.

Further Considerations

Before going on to the next step of testing and validating, the rest of
your porting needs to be completed at this point. Any additional drivers
and booters should be developed now.

Further information within this manual should be reviewed at this time.
Review Chapter 7: Miscellaneous Application Concerns, and Chapter 8:
0OS-9 Cache Control (if using 68020, 68030, 68040, or 68349 that uses
caching). Review Chapter 9: RBF Variable Sector Support if using
disks. Review Appendix D: SCSI-System Notes if using SCSI.

Once all system software has been developed, proceed to Chapter 6:
Step Four: Testing and Validation.

Completing the System

Step 1.

Step 2.

Step 3.

Step 4.

After testing the boot routine you must make a new boot/debug ROM.
This one has the sysboot . a module replaced by your new

boot xxx. a module. Make the new ROM by repeating the procedure
given in Chapter 3: Step One: Porting the Boot Code, in the section on
Putting the ROM Together. To make the new boot/debug ROM, simply
enter rake boot debug.

Note

If the resulting ROM is too large for your target system, you can make
one that omits the talk-through and/or download features by adjusting
the DBGL macro accordingly.

Create and debug additional drivers as required by your target system.
The clock driver is a must, and you may also need other drivers for hard
disks and parallel ports. A sample clock driver module is included in the
distribution package. You can continue to use the ROM debugger for
testing these.

Add the additional OS-9 modules for pipes and RAM disk, to your
OS9Boot file and test it. Also, do not forget to edit the st ar t up,
passwor d, and not d files as appropriate for your system.

If the target system is to be ROM-based, you may want to edit and
re-assemble the i ni t and/or sysgo modules so they directly call your
application program (instead of sysgo or shel |) upon startup.

Make a final version of the boot ROM for distribution. In most cases, the
final version does not have ROMbug. You can create the ROM version
by entering:

make -f=rom make

ﬁﬂ MICROWARE"

i Note

You should keep on hand a copy of the previous version that includes
the system debugger for future system maintenance.

Chapter 6: Step Four: Testing and

Validation

This chapter includes the following topics:

General Comments Regarding Testing
Kernel Tests

Serial I/O (SCF) Tests

Disk I/O (RBF) Tests

Clock Tests

Final Tests

System Configuration Checkout

A Final Note

4§XPMCROW%RE”

/\://& MICROWARE"
General Comments Regarding Testing

The quickest basic test of a new installation is to start using the system
immediately. This usually reveals major problems if they exist. The tests
described in this section can help reveal more subtle problems.

If your testing or later use of OS-9 reveals bugs, please report them to
Microware so they can be corrected in future releases. Please forward a
complete description of the problem and examples, if possible.

Refer to the Preface for information about contacting Microware.

Kernel Tests

These tests check the kernel’'s basic memory management and
multi-tasking functions:

Run the nfree and ndi r - e commands to verify all installed RAM
and ROM memory is accounted for.

Run multiple background tasks, and then use ki | | to terminate
them one-by-one. Verify with the pr ocs command.

Leave the system running overnight with multiple tasks running. Run
nf ree and procs at the beginning and end of the test and
compare.

After a system reset, run the nf r ee command and record the exact
amount of free memory. Thoroughly exercise the system by running
a large number of processes. Kill all processes, and then runnf r ee
again, checking for lost memory.

Set up test cases with two and three active processes and use the
set pr command to alter process priority. Use the pr ocs command
to verify correct allocation of CPU time.

Load, link, and unlink utility modules. Verify link counts using the
ndi r command.

/5//& MICROWARE"

Serial I/0 (SCF) Tests

These tests exercise and verify the correct operating of the serial 1/O:

Exercise and verify correct basic operation of each serial and/or
parallel 1/0 port.

Run xnode on each port to verify each device descriptor has the
desired default initialization values.

Manually test the following operations for each SCF-type driver:

Screen Pause Mode
Halt output character (<cont r ol >W

Keyboard abort and keyboard interrupt (<cont r ol >E and
<control >0

X-OFF/X-ON flow control (<cont r ol >Qand <cont r ol >S)
Proper baud rate configuration at all rates if software controllable

Check for correct operation of a maximum number of /O ports
running simultaneously.

Disk I/O (RBF) Tests

These tests exercise and verify correct operation of the disk system(s).
The OS-9 dcheck utility is the basic tool used to test the integrity of the
disk file structure:

Test the reading and writing of test patterns using a simple C or
Basic program.

Create and delete files. Verify with di r and dcheck.
Create and delete directories. Verify with di r and dcheck.

Ensure all sectors on a disk are accessible using a complete
physical disk copy such as copy /dO@/ d1@ Only the super user
may do this.

Create a large file, then copy and/or merge it several times until the
media is full. Then, delete files one by one and use the fr ee
command to ensure all disk space is properly recovered.

Format media for all formats supported by your system. Verify with
dcheck, free, and di r. Pay particular attention to interleaving.
Only the super user may do this.

Test simultaneous floppy disk and hard disk operations (if your
system is so equipped). Especially look for DMA contention
problems (if applicable).

Test the system with multiple drives installed to maximum expansion
capability.

/5//& MICROWARE"

Clock Tests

These tests exercise and verify correct operation of the system clock:

Test the ability to set and reset the date and time using the set i ne
and dat e -t commands.

Test the time of day accuracy against a stopwatch with disk and
terminal I/O operations in progress (pre-load and use the dat e
command for testing).

Test the system tick accuracy against a stopwatch with and without
disk and terminal 1/0O operations in progress (pre-load and use the
sl eep command for testing). Use at least a 10-minute test period
for a rough test, then a 12 to 24 hour period for a high accuracy test.

Run multiple concurrent tasks and test proper timeslicing.

Final Tests

Complete the following as your final test:

» Test all other supported I/O devices (if any) that were not included in
previous tests.

* Thoroughly exercise the system in multi-user interactive operation if
appropriate for your application.

» Compile and/or assemble large programs.

/\://& MICROWARE"
System Configuration Checkout

Complete the following system configuration checkout:

« Verify all standard modules are in the OS9Boot file including the
RAM disk and pipeline related modules.

» Verify all standard end-user distribution files are on the system disk
in the correct directories. This includes the standard utility set in the
CMDS, DEFS, and SYS directories. Check these for completeness
according to the information provided in your license agreement.

* Set up and/or customize the not d, st ar t up, and passwor d files.

A Final Note

You have completed your first port. If you perform another installation in
the future, you will probably take some shortcuts compared to the
procedures outlined here. This is expected. It means you have gained a
good insight into the system. The reason for this is the technique you
followed the first time was not the minimal approach, but it is the least
risky and most educational method for your first port.

If you have created new drivers for commonly used peripherals, you
may want to donate source code to our master library. This can help
save others time and trouble in the future. If you wish to do so, please
forward them to Microware. We will make sure credit is given to the
authors.

6 Step Four: Testing and Validation Aﬂ MICROWARE"

154 0S-9 for 68K Processors OEM Installation Manual

Chapter 7: Miscellaneous Application
Concerns

This chapter includes the following topics:
» Disk Booting Considerations
Soft Bus Errors Under OS-9

ﬁﬂ MICROWARE"

/\://& MICROWARE"
Disk Booting Considerations

You must consider three features for new and existing boot drivers:
e Variable logical sector sizes.
« Boot files exceeding 64K in size.

* Non-contiguous boot files.

Boot Drivers Supporting Variable Sector Size

RBF logical sectors may range in size from 256 bytes to 32768 bytes, in
integral binary multiples (256, 512, 1024, ... 32768). This allows the
RBF'’s logical sector size to match the driver’'s physical sector size.
Drivers written under the CBOOT system that are called by the

di skboot front end need not be concerned with these issues because
di skboot handles these considerations.

For boot code written before OS-9 for 68K Version 2.4, you must
address two problems:

* Determining the physical sector size of the device.
If you can query the device for the size of a sector (for example,
SCSI Read Capacity), the issue is relatively simple. If not, the issue
somewhat depends on the flexibility of the hardware. There are two
examples of drivers that may prove helpful in this issue:

Table 7-1 Sample Drivers

Name Description
SRC/ ROM DI SK/ This driver attempts to read the disk at a
boot 320. a sector size of 256. If this fails, it attempts to

read the disk at 512 bytes per sector.

SRC/ | O RBF/ DRVR/ The OMTI 5400 reads in the requested

SCSI / RB5400 number of bytes as determined by the
assign parameters. This allows the driver to
read sector 0 and update the path
descriptor.

Closely examine the SRC/ ROM CBOOT/ SYSBOOT/ di skboot . c file
for assistance in creating a booting algorithm.

/5//& MICROWARE"

* Thelogical sector size for the drive.
You can use the DD_LSNSi ze field (in logical sector 0) to determine
the logical sector size of the drive. CBOOT/ SYSBOOT/ di skboot . c
uses the following logic for dealing with disk drives:

Table 7-2

DD_LSNSize Description

0 Implies a pre-2.4 version disk drive. The logical
sector size is assumed to be 256. The physical size
of the drive is assumed to be described by the path
descriptor.

n Implies a version 2.4 or later disk drive and the
logical sector size is n. The path descriptor
determines the physical sector size.

If the logical and physical sector sizes do not match, the driver must
provide such a mapping. If the driver is written for use with the
CBQOOT system, this issue is addressed and handled by

CBOOT/ SYSBOOT/ di skboot . c, which calls the driver.

Currently, CBOOT does not support a physical sector size smaller than
the logical sector size. If this were necessary, the driver would need to
manage the mapping.

As a whole, boot drivers should support the formats allowed by the high
level drivers in the system. In the case of floppy disks, OS-9 high level
drivers allow you to create and use floppy disks at various sector sizes.
However, the boot for floppies assumes the floppy drive is formatted
with 256 byte sectors. This simplifies the driver. It also decreases the
number of attempts to read the disk before determining the correct
format of the disk. The current suggested format for floppy disks is the
0OS-9 Universal Format.

Bootstrap File Specifications

Originally, RBF bootstrap files required they be contiguous and less
than 64K bytes in size. The 0s9gen utility installed the bootstrap file by
enforcing the contiguous data requirement and then updating the
media’s identification sector (LSN 0) with the bootstrap pointers.

For More Information

Refer to the Utilities Reference manual for information about using
os9gen.

The pointers originally used are:

Table 7-3 Bootstrap Pointers

Name Description

DD BSz Word value of bootfile size.

DD BT 3-byte value of the starting LSN of the bootstrap DATA.

/5//& MICROWARE"

At V2.4, the original specifications were expanded so the identification
sector pointers are defined in an upwards compatible manner, as
follows:

Table 7-4 ldentification Sector Pointers

Name Description

DD BSzZ If DD_BSZ is non-zero, this field contains the size of the
bootstrap file, as per the original specification.

If this is O, the DD_BT field is a pointer to the file descriptor
(FD) of the bootstrap file. The FD contains the boot file size
and the segment pointer(s) for the boot file data.

DD BT If DD_BSZ is non-zero, this is the starting LSN of the
bootstrap data, as per the original specification.

If DD_BSZ is 0, this is the LSN of the file descriptor for the
bootfile.

Making Boot Files

Use the 0s9gen utility to make the bootstrap files. By default, o0s9gen
creates a contiguous boot file that is less than 64K (this follows the
original specification).

If you want a large or non-contiguous boot file, use os9gen’s - e option.

Bootstrap Driver Support

If your system requires large, non-contiguous bootstrap files, you need
to modify pre-V2.4 bootstrap drivers accordingly.

When reading a boot file, the main considerations for the bootstrap
driver are as follows:

» Support should be maintained for contiguous, less than 64K boot
files because this is 0s9gen’s default.

* Once the bootstrap driver has read the media’s identification sector,

it should inspect the bootstrap variables to decide whether a
bootstrap file is present. If both the bootstrap fields are zero, the

media is non-bootable and an appropriate error should be returned.
If the bootstrap file is present, the bootstrap driver should determine

what type it is.

* If both bootstrap fields are non-zero, the driver is dealing with a
contiguous, less than 64K boot file. The driver typically:

« Allocates memory for the boot file (specified by DD _BSZ).
» Locates the start of the bootstrap data (specified by DD_BT).
* Reads the data.

» Ifthe bootstrap size field (DD_BSZ) is 0 and the data pointer (DD_BT)

is non-zero, DD_BT is pointing to the RBF file descriptor associated
with the boot file. The driver should then:

* Read the file descriptor into memory.

* Inspect the file size (FD_SI Z) and segment entries (FD_SEG) to
determine the boot file’s size and location(s) on the disk.

The driver typically reads each segment until the entire boot file has
been read into memory. When loading the boot file into memory, the

driver must ensure the data appears in a contiguous manner.

Reading the segment entries of the boot file data requires the bootstrap

loader have a reasonable knowledge of the way RBF allocates files. In
particular, the last segment entry for the file may be rounded up to the
cluster size of the media (RBF always allocates space on a cluster
basis). The bootstrap driver can determine the media cluster size from
the DD_BI T value in the identification sector. While RBF may allocate
space on a cluster basis, the bootstrap loader should always read the
exact boot file size (rounded up to the nearest sector).

/\://& MICROWARE"
Soft Bus Errors Under OS-9

Some instructions of the MC68000-family of processors are intended to
be indivisible in their operation (examples include TAS and CAS).
Systems possessing on-board memory, off-board memory, and allow
other bus masters to access the on-board memory can run into
deadlock situations when the on-board CPU attempts to access the
external bus while the external master is accessing the on-board
memory. Often, the bus arbiter breaks the deadlock by returning a bus
error to the CPU. This is not a hard bus error (like non-existent
memory), it is a soft bus error. If the instruction is re-run, it typically
succeeds, as the deadlock situation has terminated.

The file SRC/ SYSMODS/ SYSBUSERR/ sysbuser r . a provides a
mechanism to install a soft bus error handler across the bus error jump
table entry to allow software to determine the cause of the bus error.
The soft bus-error handler can determine whether to re-run the
instruction or pass the bus error along to a previously installed handler
(such as the MMU code).

To use this facility, create a file buser r . mwith two macros:

Table 7-5 buserr.m Macros

Name Description

| NSTBERR Hardware enable for soft bus error. Setup hardware to
detect soft bus errors.

BERR Bus error handler. Detect whether bus error is soft or
hard. If soft, re-run the faulted instruction. Otherwise,
call the original handler.

The details of the entry to these macros is documented in
SRC/ SYSMODS/ SYSBUSERR/ syshbuserr. a.

Chapter 8: OS-9 Cache Control

This chapter includes the following topics:

* 0S-9 Cache Control

e System Implementation

» Default SysCache Modules

e Caching Tables

* Custom Configuration for External Caches
» ROM Debugger and Caches

» Peripheral Access Timing Violations

e Building Instructions in the Data Space

e Data Caching and DMA

« Address Translation and DMA Transfers

Aﬂ MICROWARE"

/\://& MICROWARE"
0S-9 Cache Control

Many 68000-family systems now include hardware cache systems to
improve system performance. These cache systems are implemented
as:

e On-chip caches (68020, 68030, 68040, and 68349 CPUs).
» External cache hardware on the CPU.

e Anindependent module.

* A combination of these methods.

On 0OS-9 systems, cache control is available in a flexible manner
providing you with total control over cache operation. It also allows you
to customize cache control for any special hardware requirements your
system may have.

System Implementation

To allow maximum flexibility of the cache control operations, a separate
system module called SysCache contains all of OS-9’s system caching
functions.

The kernel installs the SysCache module as an extension module
during system cold-start initialization. The kernel searches for extension
modules specified in the | ni t module. If the specified module is found,
the kernel calls the module’s initialization entry point. For the SysCache
module, this entry point performs the following functions:

* Replace the kernel's default (no-operation) F$CCt | system call with
the active version in SysCache.

* Flush and enable the system cache hardware.

For More Information

Refer to the OS-9 for 68K Technical Manual for information about how
the kernel works.

Install Cache Operations

Step 1.

Step 2.
Step 3.

To install cache operations in the system, you should:

Add the SysCache module’s name to the | ni t module’s extension
module list. For example:

Extens dc.b "0OS9P2 SysCache", O
Remake the | ni t module.

Generate a new bootstrap file for the system which includes the
SysCache module and the new | ni t module.

Step 4.

/5//& MICROWARE"

Boot the system. The system cache function is now enabled.

If caching is not required for the system, you can disable cache
operations by excluding the SysCache module from the bootfile or not
having the SysCache module name specified in the | ni t module’s
Ext ens list.

Default SysCache Modules

Microware provides default SysCache modules to simplify your task of
implementing cache control. Each version applies to a specific
sub-family of the 68000 series CPUs.

The following modules are supplied:

Table 8-1 SysCache Modules Supplied by Microware

CPU

Type Module Name File Name Operations Performed

68000 SysCache Cache none: no on-chip cache
hardware

68008 SysCache Cache none: no on-chip cache
hardware

68010 SysCache Cache none: no on-chip cache
hardware

68070 SysCache Cache none: no on-chip cache
hardware

68020 SysCache Cache020 on-chip instruction
cache

68030 SysCache Cache030 on-chip instruction and
data cache

68040 SysCache Cache040 on-chip instruction
and data cache

68349 SysCache Cache349 on-chip instruction

cache banks.

/5//& MICROWARE"

The 68000 SysCache module is essentially a no-operation cache
control module, as these CPUs do not have any on-chip cache
hardware. The module validates the parameters passed to the F$CCt |
system routine and exits with no error.

The 68020 SysCache module controls the on-chip instruction cache for
the 68020 CPU.

The 68030 SysCache module controls the on-chip instruction and data
caches for the 68030 CPU.

The 68040 SysCache module controls the on-chip instruction and data
caches for the 68040 CPU.

The 68349 SysCache module controls the on-chip instruction cache
banks for the 68349 CPU.

Caching Tables

The memory management unit for the 68040 has the feature of defining
memory areas of specific caching types. These caching types are
described as follows:

Table 8-2 Caching Types

Caching Type Description

Write-through This is a cache active mode. Basically in
write-through mode, whenever a write happens,
both the cache and the physical hardware
location are updated. Even though this is a
caching mode, it is slower than copy back, since
the physical hardware is updated on each write.
Reads, however, come from the cache as
normal.

Copy back This is a cache active mode. It is the highest
level of caching attainable. Both reads and writes
are cached, and the physical hardware may or
may not be updated with a write. This is the
fastest mode possible.

/5//& MICROWARE"

Table 8-2 Caching Types (continued)

Caching Type Description

Cache inhibited, This is a cache inhibited mode. With serialized

serialized access access, reads and writes happen as expected,
unlike with not-serialized accesses. There is no
reordering of reads over writes. This is the mode
to use when using physical hardware registers.

Cache inhibited This is a cache inhibited mode. However with this

not-serialized mode, reads may get optimized with respect to

access writes. Basically the 68040 is trying to keep its
pipeline full, and it may reorder a physical read in
front of a physical write. This may not be a
desirable affect when writing to hardware
registers.

The ssnmD40 module under OS-9 has the ability to build these tables
when OS-9 is booted. It gets the data to build these tables from the
CachelLi st entry from within the i ni t module.

The system configuration information for the i ni t module comes from
the CONFI Gmacro in the syst ype. d file. For caching, there is a label
named Cacheli st . Following this CachelLi st label are the specific
CacheType macro invocations for the syst ype. The CacheType
needs three parameters, the beginning address, ending address, and
caching mode.

For OS-9, the caching mode is defined as follows:
* For write-through: Wt Thru

» For Copy back: CopyBack

* Cache inhibited, serialized access: Cl Ser

* Cache inhibited not-serialized access: Cl Not Ser

An example cache list for the MVME167 is as follows:

CPUALI GN
Cacheli st
* NOTE t hese have been constructed to match the regions defined
* in the MenType entries above.
CacheType Mem Beg, Mem End, CopyBack
CacheType Max. Beg, Max. End, CopyBack

dc.| -1 ternminate |ist
If needing to turn off caching on a particul ar area, another field can be added to
the cache list. The following is an exanple cache Iist
CPUALI GN
Cacheli st
* NOTE t hese have been constructed to match the regions defined
* in the MenType entries above.
CacheType Mem Beg, Mem End, CopyBack
CacheType Max. Beg, Max. End, CopyBack
CacheType 0xf 0000000, Oxffffffff, Cl Ser

dc.l -1 termnate |ist

The above cache list turns off caching in VME standard space and VME
short 1/0O space.

Note
The | ni t module controls a number of other features of caching. The

I ni t module fields MbConpat and MsConpat 2 are used for this
control. Features controlled are:

» Cache burst mode (68030 only).
» Cache coherency (hardware snoopiness).

» Code bank enabling (68349 only).

/\://& MICROWARE"
Custom Configuration for External Caches

The default cache operation modules supplied by Microware only
control the on-chip caches of the CPUs. These caches are the only
known, guaranteed cache mechanisms for those types of systems.

When dealing with systems equipped with external or custom hardware
caches, you can easily produce a customized SysCache module for the
individual target system. This is accomplished with the SYSCACHE
macro included in the syscache. a file in the SYSCACHE directory.

If this macro is undefinedto syscache. a, a default no-op macro for
SYSCACHE allows the file to assemble without error. This is how the
Microware default modules are produced.

You may provide a custom SYSCACHE macro in a file called
syscache. m You can include this file via a local defs file. This custom
macro should contain the code for manipulating the system’s
external/custom cache hardware.

i Note

The module produced with the SYSCACHE macro is specific for the
target system, making all cache hardware operational.

Upon entry to the integrator-supplied routine, the dO. | register
indicates which cache operations are desired. The integrator’s routine
does not need to check for the validity of operations. For example, a
request by a user to flush the data cache when the data cache is
currently disabled by another process results in no flush on the data
cache. The integrator-supplied code does not see the data cache flush
request for this particular call.

Control of cache functionality is implemented via the MbConpat 2 byte
in the | ni t module.

M$Compat2 Bit Fields

The bit fields within MbConpat 2 are defined as follows:

Table 8-3 M$Compat2 Bit Fields

Bit 0/1 Description
0 0 External instruction cache is not snoopy.
1 External instruction cache is snoopy (or absent).
1 0 External data cache is not snoopy.
1 External data cache is snoopy (or absent).
2 0 On-chip instruction cache is not snoopy.
1 On-chip instruction cache is snoopy (or absent).
3 0 On-chip data cache is not snoopy.
1 On-chip data cache is snoopy.
4* 0 CIC bank 0 is SRAM.
1 CIC bank 0 is cache.
5* 0 CIC bank 1 is SRAM.
1 CIC bank 1 is cache.
6* 0 CIC bank 2 is SRAM.

CIC bank 2 is cache.

/5//& MICROWARE"

Table 8-3 M$Compat2 Bit Fields (continued)

Bit 0/1 Description

7* 1 CIC bank 3 is SRAM.

0 CIC bank 3 is cache.

* Bits 4-7 are for 68349 CPU only.

The snoopy/absent flags allow the kernel to make intelligent decisions
as to when to actually flush the system’s caches (with F$CCt | calls). If
the system’s hardware capabilities allow the caches to maintain
coherency via hardware means, you can set the appropriate flags so
the kernel performs only essential cache flushes.

The 68349 CIC bank flags allow the integrator to control the mix of
SRAM/cache usage for the system.

ROM Debugger and Caches

The ROMbug debugger has a limited knowledge of caching. If you use
ROMbug in a system where there are no caches external to the CPU
chip, link it with f | ushcache. | when the ROM is constructed. When
using a 68349 CPU, you should link f ush349. | instead of the usual
fl ushcache. | routine.

For More Information
Refer to Using RomBug for more information about ROVBug.

If external caches are available, you should provide a separate routine
that flushes any on-chip caches as well as the external caches. You can
add this routine to the sysi ni t . a file or link in your own (local) version
of fl ushcache. | . If you do provide a separate routine, do not link the
ROM with the default f | ushcache. | library.

i Note

Calls to the ROM debugger through F$SysDbg (for example, using the
br eak utility) works correctly because the system call maintains cache
integrity.

/5?\ MICROWARE"

Peripheral Access Timing Violations

Step 1.
Step 2.
Step 3.

When caching is enabled, peripheral access timing violations
sometimes occur in device drivers, especially when tight loops are
written to poll device status registers. If peripheral devices begin to
exhibit erratic behavior, you should take the following steps:

Disable all caching for the system.
Debug the driver until it is stable.

Re-enable caching for the system.

If erratic behavior continues, timing violations are probably occurring
because of cache hits. In this case, the driver can:

» Disable data and/or instruction caching during critical sections of the
driver (for example, interrupt service routine).

* Re-enable caching when the critical section is completed.

Note

When a driver manipulates the cache, it should try not to access the
cache hardware directly. F$CCt | calls should be performed instead.
The driver’'s code is transportable and does not conflict with the
system’s cache control operations. Interrupt service routines can call
F$CCt | ; therefore, cache operations may occur at any time.

Timing Loops

Cache enabling may break routines using fixed delay timing loops. If
specific time delays are required, you may have to rewrite the loops for
a worst case loop. (Worst case is the quickest time.) Alternatively, you
could disable caching for the body of the loop.

/5//& MICROWARE"

Building Instructions in the Data Space

Programs using their data space for building temporary instruction
sequences need to flush the instruction cache before executing the
sequences. Failure to do so may result in unpredictable program
behavior.

Data Caching and DMA

Direct Memory Access (DMA) support, if available, significantly
improves data transfer speed and general system performance,
because the MPU does not have to explicitly transfer the data between
the I/O device and memory. Enabling these hardware capabilities is
generally desirable, although systems that include cache (particularly
data cache) mechanisms need to be aware of DMA activity occurring in
the system, so as to ensure stale data problems do not arise.

i Note

Stale data occurs when another bus master writes to (alters) the
memory of the local processor. The bus cycles executed by the other
master may not be seen by the local cache/processor. Therefore, the
local cache copy of the memory is inconsistent with the contents of
main memory.

Device drivers performing DMA are required to ensure stale data
problems do not occur. Typically, the driver needs to flush the system
caches at appropriate times (for example, prior to writing data to the
device; after reading data from the device) unless the caches are
coherent through hardware means.

Indication of Cache Coherency

The MbConpat 2 variable also has flags indicating whether or not a
particular cache is coherent. Flagging a cache as coherent (when it is)
allows the kernel to ignore specific cache flush requests, using F$CCt | .
This provides a speed improvement to the system, as unnecessary
system calls are avoided and the caches are only explicitly flushed
when absolutely necessary.

/5?\ MICROWARE"

i Note

An absent cache is inherently coherent, so you must indicate absent
(as well as coherent) caches.

Device drivers using DMA can determine the need to flush the data
caches using the kernel's system global variable, D_SnoopD. This
variable is set to a non-zero value if BOTH the on-chip and external data
caches are flagged as snoopy (or absent). Thus, a driver can inspect
this variable, and determine whether a call to F$CCt | is required or not.

Address Translation and DMA Transfers

In some systems, the local address of memory is not the same as the
address of the block as seen by other bus masters. This causes a
problem for DMA 1/O drivers, as the driver is passed the local address of
a buffer, but the DMA device itself requires a different address.

The | ni t module’s colored memory lists provide a way to set up the
local/external addressing map for the system. Device drivers can
determine this mapping in a generic manner using the F$Tr ans system
call. Thus, you should write drivers that have to deal with DMA devices
in a manner ensuring the code runs on any address mapping situation.
You can do this by using the following algorithm:

If you must pass a pointer to an external bus master, call the kernel’s
F$Tr ans system call.

If F$Tr ans returns an unknown service request error, no address
translation is in effect for the system and the driver can pass the
unmodified address to the other master.

If F$Tr ans returns any other error, something is seriously wrong.
The driver should return the error to the file manager.

If F$Tr ans returns no error, the driver should verify the size
returned for the translated block is the same as the size requested. If
so, the translated address can be passed to the other master. If not,
the driver can adopt one of two strategies:

1. Refuse to deal with split blocks, and return an error to the file
manager.

2. Break up the transfer request into multiple calls to the other
master, using multiple calls to F$Tr ans until the original block
has been fully translated.

Drivers usually adopt method 1, as the current version of the kernel
does not allocate memory blocks spanning address translation
factors.

/5//& MICROWARE"

If drivers adopt these methods, the driver functions irrespective of the
address translation issues. Boot drivers can also deal with this issue in
a similar manner by using the Tr ansFact global label in the bootstrap

ROM.

Chapter 9: RBF Variable Sector
Support

The Random Block File Manager (RBF) supports sector sizes from 256
bytes to 32768 bytes in integral binary multiples (256, 512, 1024, ...
32768). This section addresses the issues that are important for writing
or modifying disk drivers to support variable logical sector sizes.

For More Information
Refer to the OS-9 for 68K Processors Technical I/0O Manual for
information about RBF.

Note

0S-9 for 68K Version 2.4 was the first release of RBF to support
variable sector sizes. If you are modifying disk drivers that only support
256 byte logical sectors, you should read this section carefully.

This chapter includes the following topics:

* RBF Device Drivers

* Converting Existing Drivers to Use Variable Sector Size
* RBF Media Conversion

» Benefits of Non-256 Byte Logical Sectors

» Bootstrap Drivers

 RBF Disk Utilities

ﬁﬂ MICROWARE"

/\://& MICROWARE"
RBF Device Drivers

RBF uses the SS_Var Sect GetStat function to dynamically determine
whether the driver it is calling can support logical sector sizes other than
256 bytes.

For More Information

SS Var Sect queries the driver to determine if support for variable
logical sector sizes is available. Refer to the OS-9 for 68K Technical
Manual for more information about SS_Var Sect .

When you open a path to an RBF device, RBF calls the driver with
SS Var Sect, and depending on the results of the call, takes the
appropriate action:

Table 9-1 RBF Actions

If the Driver
Returns Description

Without error RBF assumes the driver can handle variable logical
sector sizes. It then uses the PD_SSi ze field of the
path descriptor to set the media path’s logical sector
size, so RBF’s internal buffers may be allocated.

An unknown RBF assumes it is running with a driver that

service presumes a logical sector size of 256-bytes. RBF

request error allocates its buffers accordingly and does not use
the PD_SSi ze field of the path descriptor.

Any other RBF aborts the path open operation, deallocates
error any resources, and returns the error to the caller.

Support for variable logical sector sizes is optional under the new RBF,
as existing drivers operate in the same manner as they do under
previous versions of RBF (such as in the second case above).

/5//& MICROWARE"

Converting Existing Drivers to Use Variable
Sector Size

Step 1.
Step 2.

If you want to use the variable sector size support, use the following
guidelines to convert existing drivers.

In general, device drivers written for the old RBF were written to operate
under one of two situations:

The media logical and physical sector sizes were the same.
In this case, the driver would accept the sector count and starting
LSN, convert it to the physical disk address (if required), and then
perform the I/O transfer.

To convert these drivers written to support other logical/physical
sector sizes, you need to:

Add support for the GetStat SS_Var Sect call.
Ensure the driver does not have any hard-wired 256-byte assumptions.

Typically, this implies the driver should:

Use the sector size field (PD_SSi ze) in the path descriptor
whenever it needs to convert sector counts to byte counts (for
example when loading DMA counters).

Maintain any disk buffers in a dynamic manner so a sector size
change on the media does not cause a buffer overrun. This usually
means fixed sized buffers allocated in the static storage of the driver
should now be allocated and returned as required, using the
F$SRgMemand F$SRt Memsystem calls.

For More Information

Refer to the OS-9 for 68K Technical Manual for more information
about F$SRqgnemand F$SRt Mem

In many cases, a correctly written driver only needs the addition of
the SS_Var Sect handler (to simply return NO ERROR) to work with
variable sector sizes.

« The medialogical and physical sector sizes were NOT the
same.
In this case, the driver would translate the logical sector count and
starting LSN passed by RBF into a physical count/address, convert
those values to the physical disk address (if required), and then
perform the I/O transfer.

i Note

These types of drivers are known as deblocking drivers, as they
combine/split the physical sectors from the disk into the logical sectors
RBF requires.

You can convert drivers written with this method to variable logical
sector operation, although they may require more work than
non-deblocking drivers.

Apart from adding the code to handle the GetStat SS_Var Sect call,
you should remove:

* The driver’s deblocking code.
* Any hardwired assumptions about sector sizes and fixed buffers.

In effect, you are converting the driver from a deblocking driver to a
non-deblocking driver.

/5//& MICROWARE"

RBF Media Conversion

Step 1.
Step 2.

Step 3.

Once you have updated the driver to support the new RBF, you need to
decide whether or not to convert your media (specifically hard disk
drives) to non-256 byte logical sector sizes.

e If you convert your media, you must reformat it.

» If you are using a 256-byte logical sector size, you can immediately
use the media when the driver is ready.

If you are reformatting the media, it may only require a logical reformat
(converting a deblocking 512-byte physical sector disk to 512-byte
logical). In this case, you should perform the following steps:

Backup the media to convert.

Reformat the media. A physical format is only required if you need or
wish to change the media’s physical sector size. (Use the f or mat
utility’s - np option if you do not wish a physical reformat).

For More Information

Refer to the Utilities Reference manual for information about using
format.

Re-install the data saved in step 1.

Your conversion to a non-256 byte logical sector size should now be
complete.

Benefits of Non-256 Byte Logical Sectors

Using different logical sector sizes can provide the following benefits
depending on your application requirements:

The bitmap sector count decreases.
This may mean you can decrease the minimum cluster size of the
media on large hard disks.

The number of clusters in a bitmap sector increases.
This allows faster bitmap searches and potentially larger segments
to be allocated in the file descriptor segment list.

The media capacity may increase.

Many disk drives (both floppy and hard disks) can store more data
on the disk, due to the decrease in the number of sectors per track
(and thus less inter-sector gaps).

The chances of segment list full errors decreases.
Expanding the sector size beyond 256 bytes allows more file
segment entries in the file descriptor.

/\://& MICROWARE"
Bootstrap Drivers

Converting RBF drivers and media to non-256 byte logical sectors also
implies a change to the bootstrap code if the media is to continue to
provide system bootstrap support.

i Note

In general, the RBF driver deals with the same issues (hard-wired
assumptions about 256 byte sectors, for example) as the BootStrap
driver.

If the BootStrap driver is to support booting from any logical sector size,
note the following:

« The BootStrap driver must be able to read the identification sector
(LSN 0) of the media. Depending on the actual hardware situation
and capabilities, this may require:

* Querying the drive for the sector size (Mode Sense command to
SCSI drives).

* Reading a fixed byte-count from the drive (partial sector read).
» Attempting to read the sector using all possible sector sizes.

e Once LSN 0 has been successfully read, the BootStrap driver
should inspect the DD_LSNSi ze field of sector zero. This field gives
the media’s logical sector size (if it is 0, a size of 256 is assumed),
and this value combined with the known physical size allows the
BootStrap driver to load the actual bootstrap file. If the logical and
physical sector sizes differ, the BootStrap driver can use deblocking
algorithms or return an error.

For More Information
The next section contains more information about booting concerns
with variable sector sizes.

/\://& MICROWARE"
RBF Disk Utilities

Utilities needing to ascertain the media’s logical sector size (such as the
dcheck utility) can do so by:

* Opening a path to the device.

* Checking the PD_Sct Si z field of the path options section (with the
GetStat SS_OPT function code).

For More Information
dcheck checks the disk file structure. Refer to the Utilities Reference
manual for information about using dcheck.

RBF sets the PD_Sct Si z field to the media’s logical sector size when
the path is opened. If the field contains a 0, an old RBF is running in the
system and the logical sector size is assumed to be 256 bytes.

Appendix A: The CBoot Technology

This chapter includes the following topics:

* Introduction

e The CBOOT Common Booters
CBOQOT Driver Entry Points

e« CBOOT Library Entry Points

ﬁﬂ MICROWARE"

/\://& MICROWARE"
Introduction

This version of OS-9 for 68K is the first release to recommend the C
booting technology referred to as CBOOT. Although CBOOT requires a
larger amount of ROM space than the assembler boots supported in
previous releases, it has several added features.

CBQOOT allows you to create drivers in either C or assembly. In previous
versions, the boot routines had to manage the device and have a
knowledge of the file structure from which it was booting. The CBOOT
system provides front end code for various booting methods (such as
disk and tape) that make calls to the hardware level boot drivers. This
greatly simplifies the writing of boot code, as the only code you need to
write is generally the actual code to manage the hardware interface. You
can also create a driver source that can be conditionalized such that it
could be used as a boot driver as well as an OS-9 driver (see the
MANOS/ OS9/ SRC/ | O RBF/ DRVR/ SCSI / RBTEAC directory as an
example).

You can interface previous assembler booters into the CBOOT system
relatively easily. To update existing boot drivers to use with CBOOT, use
the sysboot . mmacro. For example, boot 320. a has been updated to
work with CBOOT.

CBQOOT allows you to create menus that can be displayed on the system
terminal. This allows you to use a terminal to select the device from
which to boot rather than by setting switches.

For More Information
CBQOOT is mainly written in C. Examining the code in the CBOOT
directory can answer many questions.

The CBOOT Common Booters

The following is an overview of the common booter source files located

in the MAOS/ OS9/ SRC/ ROM CBOOT/ SYSBOOT directory. As a whole,
you should not need to modify these sources. They are, however,

valuable as documentation.

Table A-1 Common Booter Source Files

File Booters

Description

di skboot . c di skboot ()

initdata.c

This is the front end code for
floppy and hard disk boots. If
necessary, the code performs
logical to physical mapping of
sectors and deblocks physical
blocks. It also allocates the
memory for the boot file. If the
boot file is large (greater than
64K) or non-contiguous,

di skboot performs the
necessary requests to read
the boot file. The
requirements for the low-level
boot driver are thus reduced
to hardware management.
This code can call either a
CBQOOT C driver or a converted
assembly language driver.

This is part of the glue that
initializes data for the CBOOT
system when ROMbug is not
being used. (ROMbug has its
own i ni t dat a. ¢ routine).

/5//& MICROWARE"

Table A-1 Common Booter Source Files (continued)

File Booters

Description

bi nboot . c bi nboot ()

m Sc. C

ronboot . c ronboot ()

| oadr om()

This is the entry point used for
testing downloaded boot
routines. It prompts for the
bootfile size, indicates the
load address to the operator,
and waits for the operator to
indicate the download is
completed. The kernel is
expected to be the first
module. Once the download is
completed, it jumps to the
kernel entry point.

This is a series of support
subroutines for CBOOT.

This is the ROM boot front
end. It searches the ROM list
spaces for a module with the
name ker nel and verifies the
module header parity. The
code returns the address of
the kernel to CBOOT.

| oadr om() differs from

r onboot () in that after
finding a kernel module, it
moves it and all modules
contiguously following it to
system RAM and begins
executing the kernel there.

Table A-1 Common Booter Source Files (continued)

File Booters Description

sysboot. c Sysboot is the mainline for the
CBQOOT system. It makes calls
to the routine
get boot net hod() and
routes its activity accordingly.

sysboot gl ue.c This code provides the
interface between the
assembler boot . a code call
tosysboot . a and the CBOOT
boot code.

t apeboot . c t apeboot () This is the magnetic tape front
end. It knows about the format
that is expected of a boot tape
and manages the memory
and reading of the tape. It
calls drivers that are expected
to do little more than manage
the hardware.

The file syscon. c in PORTS/ <t ar get > provides the routines

get boot net hod() and get boot t ype() for the CBOOT system. You
should review and understand this file. If the system contains hardware
switches to be used to select the booting method, you should place a
routine to read the switches and configure the system for booting in this
file. There are also a set of variables defined in syscon. c¢ that are
required for proper system operation. You can create variables that are
global to the drivers running under CBOOT by defining them in
syscon. c.

/5//& MICROWARE"

For More Information
Examples of boot drivers are located in the SRC/ ROM CBOOT directory.
Examining these drivers can be very instructive.

The syst ype. h file in PORTS/ <t ar get > performs a similar function
for C code as the assembler language syst ype. d file by controlling
system-wide definitions. Review this file for further information.

CBOOT Driver Entry Points

Under CBOOT, the boot drivers entry points are:

Table 9-2 CBOOT Driver Entry Points

Entry Point Description
init() Initialize Hardware
read() Read Number of Blocks Requested into Memory

term) Disable Hardware

/5?\ MICROWARE"

init() Initialize Hardware

Syntax
error_code init()

Description

I ni t() initializes the hardware for use. It may install interrupt service
routines if necessary.

read() Read Number of Blocks Requested into

Memory
Syntax
error_code read(
u_int32 nsect,
u_int32 | sect);
Description

read() calculates any physical sector address needed for the device
(for example, head/sector) and reads the requested sectors into
memory.

i Note

The total byte count is guaranteed not to exceed 64K for any given
read. If the device cannot read 64K, the read entry point must deblock
the read.

Parameters

nsect Specifies the number of sectors to read.
| sect Specifies the starting logical sector.

/5?\ MICROWARE"

term() Disable Hardware

Syntax
error_code tern()

Description

t erm() disables the hardware and ensures any interrupts from the
device are disabled.

CBOOT Library Entry Points

Under CBQOOT, the library entry points are:

Table 9-3 CBOOT Driver Entry Points

Entry Point Description

cal | debug() Invoke System Level Debugger

convhex() Convert Parameters to Hexadecimal
Nibble

extract () Allocate Memory from Boot ROM Free

get boot nen()
get hexaddr ()
hwpr obe()

I nChar ()

I nChChek()

i ni z_boot _driver()
insert ()
instr()

i nttoascii()

Memory List

Allocate Memory for Bootfile

Read Hexadecimal Address

Test for Existence of Hardware

Wait to Physically Receive One Character

Perform Unblocked Read of One
Character

Initialize Boot Driver
Return Memory to System Memory List
Read String from Console Device

Convert Parameter to ASCII

/5?\ MICROWARE"

Table 9-3 CBOOT Driver Entry Points (continued)

Entry Point

Description

makel ower ()

mask_i rq()
Qut Char ()
Qut Hex()
Qut 1Hex()
Qut 2Hex()
Qut 4Hex ()
out str()
power of 2()

setexcpt ()

streq()

sysreset ()

Convert Upper Case Characters to Lower

Case

Mask Interrupts

Physically Send One Character
Convert Parameter to ASCII

Convert Parameter to ASCII

Convert Parameter to ASCII

Convert Parameter to ASCII

Send String to Console Output Device
Convert Value to Power of Two

Install Exception Service Routine

Compare Two Strings for Functional
Equality

Restart System

cal | debug() Invoke System Level Debugger

Syntax
voi d cal | debug();

Description

cal | debug() starts the system level debugger. If no debugger is
present, the system reboots when the call is made.

/5?\ MICROWARE"

convhex() Convert Parameter to Hexadecimal Nibble

Syntax
i nt convhex(char inchr);

Description

convhex() converts the hexadecimal ASCII character parameter

I nchr into a hexadecimal nibble and returns it to the caller. If i nchr is
not a hexadecimal ASCII character, convhex() returns -1 to the caller
to indicate an error condition.

Parameters

I nchr Is the parameter to be converted to
ASCII nibble.

extract () Allocate Memory from Boot ROM Free
Memory List

Synopsis
error_code extract(
u_int32 *si ze,
u_char **mem ;

Description

extract () allocates memory from the boot ROM free memory list.
Memory is allocated in 16 byte increments. For example, if 248 bytes
were requested, ext ract () rounds up and allocates 256 bytes.

i Note

Boot devices use this routine to request memory not declared in the
boot driver's vsect declarations. Typically, this dynamic allocation is
performed by boot drivers with buffer requirements that are not known
at compilation time (such as disk boot drivers supporting variable sector
sizes). This method of dynamic allocation is useful for saving system
memory usage as any storage declarations made at compilation time
are fixed into the boot ROM global data area.

If the memory buffers are to be released (so they can be used by the
kernel, for example), they should be returned to the boot ROM free
memory list using the i nsert () call.

If an error occurs, ext ract () returns the error code. Otherwise, it
returns SUCCESS.

Parameters

size

/5//& MICROWARE"

Points to a 32-bit unsigned integer that is
passed in as the size of the block
requested. The actual size of the block
allocated is returned in this same
location.

Points to the pointer to the requested
block.

get boot men() Allocate Memory for Bootfile

Syntax
error_code getbootnmem u_int32 sizereq);

Description
get boot men() allocates memory for a bootfile via the ext r act ()
function. If memory for a bootfile has already been allocated by some
previously called function, get boot men{() returns that block to the
system via the i nsert () function.
The pointer to the bootfile memory allocated is returned in the global
variable boot r am
The actual size of the memory allocated is returned in the global
variable mensi ze.
If an error occurs, get boot nen{) returns the error code to the caller.
Otherwise, it returns SUCCESS.

Parameters

Si zereq Indicates the size of the requested
memory block.

/5?\ MICROWARE"

get hexaddr () Read Hexadecimal Address

Syntax
voi d *get hexaddr () ;

Description

get hexaddr () reads the console input device for a hexadecimal
address up to eight characters in length (32 bits). This address is then
converted to a 32-bit integer and returned to the caller.

get hexaddr () ignores any character received from the console other
than hexadecimal ASCII, a carriage return, or the letter g or Q The
letter g or Qreturns a special abort error designation of -3 to the caller.

If a carriage return is received from the console and there was no
previous input, get hexaddr () returns a -1 to indicate a no address
input error.

i Note

Any hexadecimal input value from 0x0 to Oxf ff ff f f c is returned to
the caller.

hwpr obe() Test for Existence of Hardware

Syntax
error_code hwprobe(char *address);

Description
hwpr obe() tests for the existence of hardware at addr ess.
hwpr obe() installs a bus error handler and attempts to read from
addr ess. hwpr obe() returns SUCCESS if the hardware is present or
E$BusEr r if it fails.

Parameters

addr ess Points to the address to be checked.

/5?\ MICROWARE"

I nChar () Wait to Physically Receive One Character

Syntax
char InChar();

Description

I nChar () waits for the hardware to physically receive one character,
echoes the input character back to the console output device (via the
Qut Char () function), and returns the character to the caller.

I NnChChek() Perform Unblocked Read of One Character

Syntax
i nt 1 nChChek();

Description

I nChChek() performs an unblocked read of one character from the
console input device. If the device has not received a character,

I nChChek() does not wait, but returns an error designation of -1 to the
caller. Otherwise, the character is returned.

/5//& MICROWARE"

I ni z_boot _driver() Initialize Boot Driver
Syntax
error_code iniz_boot driver(

voi d *addr ess,

char *nane,

char *menul i ne,

char *idstring);
Description

I ni z_boot _driver () initializes a boot driver by placing the
parameters in the boot driver definition array.

Parameters
addr ess

namnme

nmenul i ne

i dstring

Points to the boot driver’'s execution
entry point.

Points to a null-terminated character
string that is the name of the boot driver.
SysBoot uses this name for messages
concerning the boot driver. For example,
An error occurred in the
<nane> boot driver.

Points to a null terminated character
string that is the message desired for the
boot driver on a menu line. This entry is
also used when the AUTOSELECT
method is used to inform the user from
which boot device SysBoot is
attempting to boot. For example, Now
trying to <menul i ne>.

Points to a null terminated character
string that is the identification code to tell
SysBoot which boot driver to call. This
string appears in the menu at the end of
a menu entry to indicate to the user what

to type in to select a given boot driver.
i dstringis also used to match the
string returned by get boot t ype() in
order to determine the boot driver
selected.

/5?\ MICROWARE"

I nsert () Return Memory to System Memory List

Syntax
Dunb_nmem i nsert (

u_int 32 si ze,
u_int32 *men ;

Description

I nsert () returns memory to the system memory list. Memory is
returned in 16 byte increments. For example, if 248 is passed as the
size to return, i nsert () rounds up and returns 256 bytes.

I nsert () returns the new pointer to the head of the memory list.

i Note

This pointer is also found in the global variable f r eenemn i st.

Parameters
si ze Specifies the size of the returned block.
mem Points to the block to return.

See Also

extract ()

instr() Read String from Console Device

Syntax
char *instr(
char *str,
u_int32 si ze);
Description

i nstr () reads a string from the console device into a buffer
designated by the pointer str.i nstr () handles the following
rudimentary line editing functions:

Table A-2 Line Editing Functions

Name Description
<CTRL> X Back up the cursor to the beginning of the line.
<CTRL> A Display the previous contents of the buffer.

<BACKSPACE> Back up the cursor one character.

i nstr () returns to the caller when it receives a carriage return (\ n)
from the console.

i Note

i nstr () ignores any character other than a carriage return if it is
received when the buffer is already full.

Parameters

*str Points to the beginning of the input string
passed back to the caller.

/5//& MICROWARE"

si ze is a 32-bit unsigned integer used to
determine the size of the buffer to which
the input string is written.

i nttoascii () Convert Parameter to ASCII

Syntax

u_char *inttoascii(
u_int32 val ue,
char *bufptr);

Description

i nttoascii () converts the unsigned 32-bit integer parameter val ue
to a null terminated string of up to ten characters of numeric ASCII.
Leading zeroes beyond the hundreds digit are ignored. At least three
digits are guaranteed.

i nttoascii () returnsthe buffer pointer after it is incremented to point
to the first character after the ASCII string.

Parameters
val ue Is the parameter to convert.

buf ptr Points to a character buffer in which to
deposit the string.

/5?\ MICROWARE"

makel ower () Convert Upper Case Characters to Lower
Case

Syntax
char nmakel ower (char c¢);

Description

makel ower () converts an uppercase alphabetic ASCII character to
lowercase and returns it to the caller. Any other character is simply
returned to the caller intact.

Parameters

C Is the uppercase ASCII character to be
converted to lowercase.

mask_i rq() Mask Interrupts

Syntax
u_intlé mask_irqg(u_intl1l6 mask);

Description

mask _i rq() masks the interrupts in the 68xxx MPU status register to
the level indicated by the interrupt mask bits in the parameter mask.

mask_i rq() returns the previous contents of the status register to the
caller.

i Note

mask is actually inserted directly into the 68xxx MPU status register.
The caller must ensure the supervisor state bit is not changed. The
condition codes are also affected.

mask_irq() does not take steps to preserve the trace flag. If soft
breakpoints are enabled and ROM breakpoints are active,
mask_i rq() can disable them and the breakpoint may be missed.

Parameters

mask Is the mask.

/5?\ MICROWARE"

Qut Char () Physically Send One Character

Syntax
voi d Qut Char (char c);

Description
Qut Char () physically sends one character to the console output
device.

Parameters
C Is the character to send to the console

output device.

CQut Hex() Convert Parameter to ASCII

Syntax
voi d Qut Hex(char ni bbl e);

Description
Qut Hex() converts the lower four bits of the parameter ni bbl e to an
ASCII hexadecimal character (0 - F) and sends it to the console output
device via the Qut Char () function.

Parameters

ni bbl e Is the parameter to be converted to
ASCII hex.

/5?\ MICROWARE"

Qut 1Hex () Convert Parameter to ASCII

Syntax
voi d Qut 1Hex(u_char byte);

Description

Qut 1Hex () converts the unsigned character parameter byt e to two
ASCII hexadecimal characters (0 - F) and sends them to the console
output device via the Qut Char () function.

Parameters

byt e Is the parameter to be converted to
ASCII hex.

Qut 2Hex () Convert Parameter to ASCII

Syntax
voi d Qut 2Hex(u_int16 word);

Description
Qut 2Hex () converts the 16-bit unsigned parameter wor d to four ASCII
hexadecimal characters (0 - F) and sends them to the console output
device via the Qut Char () function.

Parameters

wor d Is the parameter to be converted to
ASCII hex.

/5?\ MICROWARE"

Qut 4Hex () Convert Parameter to ASCII

Synopsis
voi d Qut4Hex(u_int32 | ongword);

Description

Qut 4Hex () converts the 32-bit unsigned parameter | ongwor d to eight
ASCII hexadecimal characters (0 - F) and sends them to the console
output device via the Qut Char () function.

Parameters

| ongwor d Is the parameter to be converted to
ASCII hex.

outstr() Send String to Console Output Device

Syntax
error_code outstr(char *str);

Description

out str () sends a null-terminated string to the console output device.

i Note

out str () always returns SUCCESS.

Parameters

str Points to the first character in the string
to send.

/5?\ MICROWARE"

power of 2() Convert Value to Power of Two

Syntax
i nt powerof2(u_int32 val ue);

Description

power of 2()) converts the unsigned 32-bit integer parameter val ue
into a power of two (bit position). Any remainder is discarded. If val ue
is equal to O, power of 2() returns -1 to indicate an error condition.

Parameters

val ue Is the unsigned integer parameter to be
converted.

set excpt () Install Exception Service Routine

Syntax
u_int32 setexcpt(
u_char vect or,
u_int32 irgsvce);
Description

set excpt () installs an exception service routine directly into the
exception jump table.

set excpt () returns the address of the exception service routine
previously installed on the vector. You can use set excpt () to set up
specialized exception handlers (such as bus trap and address trap) and
to install interrupt service routines.

i Note

The caller must save the address of the previously installed exception
handler and restore it in the exception jump table (via set excpt ())
once the caller is no longer using the vector.

Parameters
vect or Is a vector number (2 - 255).
irgsvce Is the address of the exception service

routine.

/5?\ MICROWARE"

streq() Compare Two Strings for Functional
Equality

Syntax
u_int32 streq(
char *stgl,
char *stg2);

Description

streq() compares two strings for functional equality. The case is
ignored on alphabetic characters, for example, ‘a’ = ‘A’. If the two strings
match, st req() returns TRUE (1). Otherwise, it returns FALSE (0).

Parameters

stgl Points to the first string to compare.
stg2 Points to the second string to compare.

sysreset () Restart System

Syntax
voi d sysreset();

Description

sysreset () restarts the system from dead start initialization.
sysreset () does not return to the caller.

A The CBoot Technology M MICROWARE"

232 0S-9 for 68K Processors OEM Installation Manual

Appendix B: Trouble Shooting

This appendix is designed to help if you run into problems while porting
0S-9 for 68K. It includes the following topics:

Introduction
Step 1: Porting the Boot Code
Step 2: Porting the OS-9 for 68K Kernel and Basic 1/0

Setting Up the DevCon Descriptor Field for the Sc68681 Serial
Driver

Searching the Module Directory

ﬁﬂ MICROWARE"

/5//& MICROWARE"

Introduction

Step 1.

Step 2.
Step 3.
Step 4.

This appendix is designed to help if you run into problems while porting
0OS-9 for 68K. To use this appendix most effectively:

Identify during which step of the booting process you are having
problems.

Go to that section in this appendix.
Locate the description best describing your problem.

Read and follow the directions you find there.

Step 1: Porting the Boot Code

If you encountered problems during Chapter 3: Step One: Porting the
Boot Code, read this section carefully:

If you are getting unresolved references during linking, this error is the
result of one of three conditions:

1. Alibrary is missing from the link line.
Two utilities, r dunp and | i bgen, are available to help you find
which library contains the unresolved reference. The | i bgen utility
locates references for Ultra C compiler libraries, while r dunp finds
references for libraries created with the Version 3.2 compiler. To
search for a reference in a library, use the following type of
command:

$ rdunmp -a <library.l> ! grep <reference nane>
$ libgen -le <library.l> ! grep <reference nane>

Once the library reference is found, include the library in the LI BS
macro of the makefi | e.

2. The ordering of the libraries is incorrect.

If you find the references are all in the libraries you are including,
then the problem may be with the ordering of the libraries. The linker
is a single pass linker. If a function references an external variable or
a function defined earlier in the same library or another library and if
the linker has already moved pass that point, the linker is not able to
resolve the reference. For this reason, the ordering of the libraries is
important.

To determine the ordering of the OS-9 standard libraries:

Step 1. Compile a simple program in verbose mode (- b with Ultra C, - bp with
the version 3.2 C compiler). The cc executive passes the libraries in the
correct order to the linker.

Step 2. Look at the linker line generated by the cc executive.

/5//& MICROWARE"

Step 3. Note the ordering of the specific libraries in which you are interested.
Many other libraries need to be linked in front of the standard libraries,
for they often call functions out of these standard libraries.

3. Thelibraries are in the wrong position in the link line.
Sometimes, if the libraries are not included at the end of the linker
line, unresolved references can occur. Try moving the libraries to the
end and see if this helps.

Step 2:

Porting the OS-9 for 68K Kernel and

Basic I/O

If you encountered problems during Chapter 4: Step Two: Bringing Up
the Kernel and Console 1/O, look for the error message you received
and read that section carefully:

MPU incompatible with OS-9 kernel

You are using the wrong kernel for that specific processor. The boot
code has produced a bus error stack frame and from this, it has
determined which specific processor is being run (68000, 68010,
68020, 68030, ...). There is a specific kernel for each of these
processors, and the wrong kernel is being used.

0OS-9 Boot failed; can’t find init

The kernel could not find the | ni t module. Verify the | ni t module
is in the same special memory bank as the kernel and it has a
module name of | ni t . This error can also occur when boot . a finds
an exceedingly small amount (or no RAM). Verify the amount of
RAM by register dO and a4 at the first boot stage.

For More Information

For additional information about dO and a4, refer to Chapter 3: Step
One: Porting the Boot Code.

Can't allocate <name of> table

The kernel is trying to allocate room for its own table and has run out
of RAM. Verify the amount of RAM by register dO and a4 at the first
boot stage.

/5//& MICROWARE"

i Note

The error message usually reports an error number (in Hex) to indicate
the reason why the failure occurred. These error numbers are standard
0OS-9 for 68K error codes.

» Can’t open console terminal
IOMan is trying to open the console name defined in the MsConsol
field of the | ni t module. An error has occurred preventing IOMan
from booting. This error can occur for many reasons, including:

a. The driver and descriptor modules do not have owners of 0.0.
You can use the i dent utility to verify this, and you can use the
f i xmod utility to change the owner of a module.

b. Either the driver, descriptor, or the SCF file manager was not
found during the kernel’s module search list. Review the
Searching the Module Directory section of this chapter and
verify these modules were found. If not, check the special
memory areas and verify these modules are in these areas.
Also, check the ROM list at the first boot stage to make sure all
special memory areas were found.

c. The driver returned an error. For some reason, the driver’'s | ni t
routine is returning with an error. Either the driver must be
debugged using RomBug or review the source to determine the
reasons why an error can be returned.

If you are using the sc68681 driver, a common problem is the proper
setting of the DevCon descriptor field. Review the section on setting up
the DevCon field later in this appendix.

» Can't open default device
IOMan is trying to open the default device name defined in the
MbSysDev field of the | ni t module. The reasons for this error are
similar to those for the console device given above except the file
manager used is RBF.

Coldstart Errors for the Atomic Versions of the Kernel
and IOMan

When running in an Atomic environment, if the Kernel or IOMan cannot
complete their startup procedures correctly then an error code is printed
to the system console.

These error codes are currently defined as:

Table B-1 Coldstart Errors

Module Error Meaning
kernel K- 001 the processor type and kernel are not
compatible
K- 002 the kernel can't find the | ni t module
K- 003 the kernel can't allocate the process block
table
K- 004 the kernel can't allocate its irq stack
K- 005 the kernel can'’t fork the initial process
K- 006 an error was returned from an extension
module
K- 007 the kernel can't allocate its irq polling
table
K- 008 the kernel can't allocate the event table
K- 009 the total size of a process descriptor is

greater than 32K

ioman | -001 ioman can'’t install its service requests

/5?\ MICROWARE"

Table B-1 Coldstart Errors (continued)

Module Error Meaning
| -002 loman can’t locate the | ni t module
-003 ioman can’t allocate memory for the

system path and device tables

If a problem occurs with startup using the development kernel or
IOMan, a full text message is printed on the system console instead of
an error code.

Errors during system startup are caused by inappropriate values in the
system’s | ni t module.

Setting Up the DevCon Descriptor Field for
the Sc68681 Serial Driver

There is an area of 256 bytes with the kernel’'s system globals called
OEM Global Data. The kernel does not use this area; OEMs may use it
for whatever they like.

The MC68681 serial device has a peculiar feature—two of its registers
are write only registers. These registers are the:

* Interrupt Mask Register (IMR).
» Auxiliary Control Register (ACR).

Because this device has three functions (serial port A, serial port B, and
a ticker) changes to these two write only registers must be
communicated to other drivers using this device. The sc68681 driver
generates a shadow register pair of the IMR and ACR within the OEM
Global Data area. In this way, the driver running for port A can
communicate changes for the driver running for port B, as well as the
ticker routines.

One shadow register pair is required for each physical 68681 serial
device used in the system, so the drivers for each side of each device
can communicate with each other. The allocation of each pair is
communicated to the driver via the DevCon section of the SCF
Descriptor for each logical device. An example allocation is:

Device #1: A-side port: “TERM” - pair #1
Device #1: B-side port: “T1" - pair #1
Device #2: A-side port: “T2" - pair #2
Device #2: B-side port: “T3" - pair #2, etc...

Each pair of bytes contains the current value of these registers, for each
68681 serial device in the system.

* The first byte of the pair is the Interrupt Mask Register (IMR) image.

* The second byte of the pair is the Auxiliary Control Register (ACR)
image.

/5?\ MICROWARE"

Allocation of each pair of bytes is done via an offset pointer located in
the DevCon section of SCF device descriptors. The offset pointer is the
address offset into this area, as follows:

Byte O f set Devi ce Number
[0 >> device #1
2 >> device #2
4 e >> device #3

You can put the following example code into your syst ype. d file to
make proper descriptors.

Khkhkkkhhkhkhhhkkhhhhhkhhhkhkhhkkhkkkh*k

* Make Descriptors for sc68681 device
* Need to set up DevCon field correctly
org O base offset starts at OEM d ob

D 681_1 do.w 1 shadow register pair for device #1
D 681_2 do.w 1 shadow register pair for device #2
D 681_3 do.w 1 shadow register pair for device #3
D 681_4 do.w 1 shadow register pair for device #4
D 681_5 do.w 1 shadow register pair for device #5
D 681_6 do.w 1 shadow register pair for device #6
D 681_7 do.w 1 shadow register pair for device #7

Khkhkkkhhkhkhhhkkhhhkhhkhhhkhkhhkkhhkkkk

* SCF device descriptor definitions

* used only by scf device descriptor nodul es

*

* SCFDesc:

Port, Vector, I RQ evel ,Priority, Parity, BaudRate, Dri ver Nane
MsVect , MbI RQLvI , MBPri or,

Descriptors termand t1 are for the 1st 68681 device

* Ok ok %k F

TERM macr o
SCFDesc Ter nBase, Ter n\Vect, Ter nLevel , 1, 0, 14, sc68681
DevCon dc.w D 681_1 offset in OEM gl obal storage
endm
T1 macro
SCFDesc T1Base, T1Vect, TllLevel, 2,0, 14, sc68681
DevCon dc.w D _681_1 offset in OEM gl obal storage
endm

*

* Descriptors t2 and t3 are for the 2nd 68681 device
*

T2 macro

SCFDesc T2Base, T2Vect, T2Level , 2, 0, 14, sc68681

DevCon dc.w D 681_2 offset in OEM gl obal storage
endm

T3 macro

SCFDesc T3Base, T3Vect, T3Level, 2, 0, 14, sc68681

DevCon dc.w D _681_2 offset in OEM gl obal storage

endm

*

* Descriptors t4 and t5 are for the 3rd 68681 device
*

T4 macro

SCFDesc T4Base, T4Vect, T4Level, 2,0, 14, sc68681

DevCon dc.w D_681_3 offset in OEM gl obal storage
endm

T5 macro

SCFDesc T5Base, T5Vect, T5Level , 2, 0, 14, sc68681

DevCon dc.w D _681_3 offset in OEM gl obal storage
endm

/\://& MICROWARE"
Searching the Module Directory

The gb command at the ROMBug prompt starts the boot stages for
ROMBug. This tells the debugger to go in boot stages.

After the initial go, the debugger breaks out of the boot procedure just
before the boot . a code jumps to the kernel. This is to check if the boot
code performed like it should. The registers should be in OS-9 format as
documented in the The Boot.a File section of Chapter 3: Step One:
Porting the Boot Code. If all seems well, another gb in RomBug or g in
debug allows the jump to the kernel and for the boot procedure to break
again.

The debugger breaks in the cold part of the kernel. The code for cold
has just completed the memory verification and the ROM memory
module searches. It is just about ready to fork the initial process. At this
point, you can manually search the module directory to see if all the
modules have been found.

At this point, the memory location pointed to by the vbr register (or
memory location 0 if on a 68000 processor) points to the beginning of
system globals. Offset Ox3c from the system globals the address of the
module directory list. Each directory entry is 16 bytes, or 10 hex bytes
that can make dumping it very handy. The first long word in a directory
entry is the address to the module itself.

From a debugger, the following gets to the module directory:
d [[.vbr]+3c]

The following actually gets to the first module listed in the directory,
which should be kernel:

d [[[.vbr]+3c]]

i Note

These examples assume a CPU with a VBR. If your CPU does not have
a VBR, substitute the value of O in the following examples.

The next module would be obtained by:
d [[[.vbr]+3c]+10]

The modules should be listed as they were put into the ROMs or
bootfile. To find the name of the module:

» Get the name offset from the header.
» Add the offset to the beginning of the header.

Note
Remember, all modules begin with the code 4af c.

Once the system is running, you can reference the system globals with
either RomBug or SysDbg to see the module directory. For example:

d [[[.vbr]+3c]+10]

The name string of the module is pointed to by a pointer stored at offset
Oxc into the module. This offset is the offset of the name string from the
beginning of the module. This can be referenced indirectly from the
debugger and added on to the beginning of the module. Use the
following debugger to find the name of the first module:

d [[[.vbr]+3c]]+[[[[.vbr]+3c]] +c]
The second and third module names can be found as follows:

d [[[.vbr]+3c]+10]+[[[[.Vvbr]+3c] +10] +c]
d [[[.vbr]+3c]+20]+[[[[.Vvbr]+3c] +20] +c]
As a shortcut to displaying the modules, the following sequences of
commands can be used:
ROWoug: .rl [[.vbr]+3c]
dJ[.rl]+[[.r1]+c] 10 .r1 .r1+10

Simply use cont r ol - Arepeatedly after entering the second line to
display the names in the module directory in sequence.

B Trouble Shooting M MICROWARE"

246 0S-9 for 68K Processors OEM Installation Manual

Appendix C: Low-level Driver Flags

This appendix explains the low level 1/0O driver flags for each driver in
the Developer’s Kit. These flags deal with chip addressing and other
issues that are different between hardware processor boards. There are
also flags determining which driver is using the Cons port and which is
using the Comm port. These flags should be defined in syst ype. d. If
a driver is included in the Developer’s Kit and is not listed here, simply
view the source to determine what each of the flags do.

This appendix contains the following topics:
* Flags for io2661.a

» Flags for i06850.a

* Flags for i068560.a

* Flags for i068562.a

* Flags for i068564.a

* Flags for i068681.a

* Flags for i068901.a

* Flags for i0z8530.a

M MICROWARE"

Flags for io2661.a

/5//& MICROWARE"

ConsType If equated to SC2661, the driver handles
console 1/0.

Commily pe If equated to SC2661, the driver handles
communication I/O.

Ser Type If equated to DBC68, the registers on the
chip are addressed for every byte
addressing. If this label is not defined, or
defined to be something else, the chip’s
registers are addresses for every other
byte.

For example,

if Ser Type = DBC68 the addressing is base+0, base+1, base+2,

base+3.

if Ser Type ! = DBC68 the addressing is base+0, base+2, base+4,

base+6.

Flags for i06850.a

ConsType If equated to MC6850, the i 06850. a is
used for console I/0O.
Commilype If equated to MC6850, the i 06850. a is

used for communication 1/O.

| OType This flag must be equated to either O or
1. This driver accesses the 6850'’s status
register with an offset of zero from the
Cons_Addr (or Corm Adr), and the
data register is accessed either by an
offset of 1 or 2 depending on whether
| OType is equated to O or 1 respectively.

Ser Type If equated to H68K, an onboard chip
accessible baud rate generator is
available. A flag, Ti nPor t , needs to be
equated to address of this baud rate
generator. Codes within this
conditionalized code needs to be
modified to set the baud rate generator
correctly. If there is no chip accessible
baud rate generator, Ser Type should
not be defined at all.

/\://& MICROWARE"
Flags for i068560.a

ConsType If equated to R68560, i 068560 is used
for console 1/0.

Commilype If equated to R68560, i 068560 is used
for communication 1/O.

CPUType If equated to CPU29, another flag,

BusW dt h, needs to be defined.

BusW dt h label determines the addressing for the registers on the
68560. If CPUType is not defined at all, the default addressing or bus
width is 2, registers are accessed on every other byte.

By default, the driver accesses registers starting at the base address. If
you wish to start accessing the registers at base address +1, equate
label | OBdType to 2.

Flags for i068562.a

ConsType

Commilype

CPUType

If equated to S68562, i 068562 driver
handles console 1I/O.

If equated to S68562, i 068562 handles
communication I/O.

This label can be defined to CPU30. If
not defined, or defined to be something
else, the registers of the 68562 start at
the Cons_Addr (or Comm Adr) and are
addressed by every byte. If this label is
set to CPU30, another label, BusW dt h
needs to be defined. Also, the registers
start at Cons__Addr +1 (or

Comm Adr +1). BusW dt h label is set to
the number of bytes between each
register.

/\://& MICROWARE"
Flags for io68564.a

There are no flag or label definitions for this driver. All of the register
labels for the 68564 start at Cons_Addr or Conm Adr and is
addressed for every byte. If the addressing for your hardware is
different, these labels need to be changed to fit your hardware.

Flags for i068681.a

The standard version of this code assumes the Console device is the A
side chip port, and the communications device is the B side port of the
same chip. When this situation does not apply, you need to implement
system specific conditionals via i f def statement (refer to PACERMOS
for example coding).

For all versions, the IMR shadow images for the CONS port is assumed
to be held in the first pair of bytes, starting at the OEM global area,
D Start.

For the PACER system, the IMR shadow image for the COMM is
expected to reside in the second pair of OEM Globals.

For More Information

For further information about OEM Globals and shadow registers,
please refer to the section Setting Up the DevCon Descriptor Field
for the Sc68681 Serial Driver in Appendix B: Trouble Shooting.

There are three label definitions that need to be defined for this driver:
FASTCONS, PACERMOS, and CPUTy pe.

FASTCONS If this label is defined, the CONS port
and COMM port runs at 19.2K Baud. If
not defined, the default is 9600 Baud.

PACERMOS If this label is defined, the CONS port is
on the A side of chip one, and the
COMM port is on the B side of chip two.
This also sets the port to be even parity
and seven bits/character.

CPUType This label has several different
definitions. Its main purpose is to define
the registers on the 68681 are
addressed.

/5//& MICROWARE"

VME165 addressing is every fourth byte.

VME135,VME140,VME141, SYS360. MC68340 addressing is every
other byte.

In addition to the above, the following CPUTy pe labels have affects:

MC68340 There is a separate mode register 2 and
this allows coding for it.

SYS360 Sets up RTS on the CONS port.

Flags for i068901.a

ConsType

Commilype

BC_68901

If set to MOS68901, thei 068901. a is
used as the console drivers.

If set to MOS68901 the i 068901. a is
used on the communications driver.

This label should be equated to the bus
width of the ship’s register addressing. If
not defined, the default bus width is two
for addressing the registers on every
other byte.

Flags for i0z8530.a

/5//& MICROWARE"

ConsType

Commilype

CPUType

ConsBaud

CommBaud

VWR14St d

If equated to ZA, the A side of the chip is
the console port. If equated to ZB, the B
side is the console port.

If equated to ZA, the A side of the chip is
the communications port. If equated to
ZB, the B side is the communications
port.

This determines the addressing of 8530.
If set to VME117, VME107, or VME162,
the addressing starts at Cons_Addr +1
(or Comm _Adr +1) and is accessed on
every byte.

Setting this sets the console device baud
rate. If this is not defined, the label
WR12Std needs to be set. This label is
set to the value to be put into write
register 12 to set the baud rate.

Same as ConsBaud, except it sets the
baud rate for the communications port.

This label needs to be set up for write
register 14 of the 8530.

Appendix D: SCSI-System Notes

This appendix contains information about the OS-9 for 68K
SCSI-System Drivers.

M MICROWARE"

/\://& MICROWARE"
0OS-9 for 68K SCSI-System Drivers

Hardware Configuration

The basic premise of this system is to break the OS-9 for 68K driver into
separate high-level and low-level areas of functionality. This allows
different file managers and drivers to talk to their respective devices on
the SCSI bus.

The device driver handles the high-level functionality. The device driver
is the module called directly by the appropriate file manager. Device
drivers deal with all controller-specific/device-class issues (for example,
disk drives on an OMTI15400).

For More Information

When you write a device driver, do not include MPU/CPU specific code.
This makes the device driver portable. Refer to the OS-9 for 68K
Technical Manual for more information about device drivers.

The high-level drivers:
* Prepare the command packets for the SCSI target device.
» Pass this packet to the low-level subroutine module.

The low-level subroutine module passes the command packet (and data
If necessary) to the target device on the SCSI bus. The low-level code
does not concern itself with the contents of the commands/data; it
simply performs requests for the high-level driver. The low-level module
also coordinates all communication requests between the various
high-level drivers and itself. The low-level module is often an MPU/CPU
specific module, and thus can be written as an optimized module for the
target system.

The device descriptor module contains the name strings for linking the
modules together. The file manager and device driver names are
specified in the normal way. The low-level module name associated with
the device is indicated via the DevCon offset in the device descriptor.
This offset pointer points to a string containing the name of the low-level
module.

Example One

An example system setup shows how drivers for disk and tape devices
can be mixed on the SCSI bus without interference.

OMTI5400 Controller

Attributes include:

* Addressed as SCSI ID 6.

» Hard disk addressed as controller’s LUN 0.

* Floppy disk addressed as controller’'s LUN 2.

» Tape drive addressed as controller's LUN 3.

Fujitsu 2333 Hard Disk with Embedded SCSI Controller
Addressed as SCSI ID 0.

Host CPU: MVME147

Attributes include:

» Uses WD33C93 SBIC Interface chip.
* Own ID of chipis SCSI ID 7.

/5//& MICROWARE"

The hardware setup looks like this:

Figure D-1 Hardware Setup

147
ID:7 >
OMTI5400 F2333
ID:6 ID:0
H/D F/D Tape H/D
LUN O LUN 2 LUN 3 LUN O

Software Configuration

The high-level drivers associated with this configuration are:

Table D-1 High-level Drivers

Name Handles

RB5400 Hard and floppy disk devices on the OMTI5400.
SB5400 Tape device on the OMTI15400.

RB2333 Hard disk device.

The low-level module associated with this configuration is:

Table D-2 Low-level Modules

Name Handles

SCSI 147 WD33C93 Interface on the MVME147 CPU.

A conceptual map of the OS-9 for 68K modules for this system looks
like this:

Figure D-2 Example 1 Conceptual Map of OS-9 for 68K Modules

Kernel Level 0S-9 Kernd|

File Manager Level RBF (disks SBF (tapes
Device Driver Level RB5400 RB2333 SB5400
Physical Bus Level SCsSl147

If you have followed the previous guidelines, you can easily expand and
reconfigure the SCSI devices (both in hardware and software). Three
examples show how this could be achieved.

Example Two

This example adds a second SCSI bus using the VME620 SCSI
controller. This second bus has an OMTI5400 controller and associated
hard disk.

The VME620 module uses the WD33C93 chip as the SCSI interface
controller, but it uses a NEC DMA controller chip. Thus, you need to
create a new low-level module for the VME®620 (we call the module
SCSI 620). To create this module, edit the existing files in the

SCSI 33C93 directory to add the VME620 specific code. This new code

/5//& MICROWARE"

would typically be conditionalized. You could then create a new makefile
(such as make. vime620) to produce the final SCSI 620 low-level
module.

The high-level driver for the new OMTI15400 is already written (RB5400),
so you only have to create a new device descriptor for the new hard
disk. Apart from any disk parameter changes pertaining to the actual
hard disk itself (such as the number of cylinders), you could take one of
the existing RB5400 descriptors and modify it so the DevCon offset
pointer points to a string containing SCSI 620 (the new low-level
module).

The conceptual map of the OS-9 for 68K modules for the system now
looks like this:

Figure D-3 Example 2 Conceptual Map of OS-9 for 68K Modules

Kernel Level 059
Kernel
File Manager RBF (diskg) SBF (tapes)
Level
Device Driver RB5400 RB2333 SB5400
Level
hvsical) SCSI1620 SCSl147
Physical BUj gcs) Bus #2 SCSI Bus #1
Level

Example Three

This example adds an Adaptec ACB4000 Disk Controller to the SCSI
bus on the MVME147 CPU.

To add a new, different controller to an existing bus, you need to write a
new high-level device driver. You would create a new directory (such as
RB4000) and write the high-level driver based on an existing example
(such as RB5400). You do not need to write a low-level module, as this
already exists. You then need to create your device descriptors for the
new devices, with the module name being r b4000 and the low-level
module name being scsi 147.

The conceptual map of the OS-9 for 68K modules for the system now
looks like this:

Figure D-4 Example 3 Conceptual Map of OS-9 for 68K Modules

Kernel Level 0S-9 Kernel
File Manager Level RBF (disks SBF (tapes
Device Driver Level RB5400 RB2333 RB4000 SB5400

SCsSl1147

Physical Bus Level SCSI Bus #1]

Perhaps the most common reconfiguration occurs when you add
additional devices of the same type as the existing device. For example,
adding an additional Fujitsu 2333 disk to the SCSI bus on the
MVME147. To add a similar controller to the bus, you only need to
create a new device descriptor. There are no drivers to write or modify,
as these already exist (RB2333 and SCSI 147). You need to modify the
existing descriptor for the RB2333 device to reflect the second device’s
physical parameters (SCSI ID) and change the actual name of the
descriptor itself.

D SCSI-System Notes Aﬂ MICROWARE"

264 0S-9 for 68K Processors OEM Installation Manual

Appendix E: Using the OS-9 for 68K
System Security Module

This appendix includes the following topics:

« Memory Management Units

» Hardware/Software Requirements

» Configuring SSM for MC68451 Systems
 Adding SSM to the OS-9 Bootfile

* Creating a System Security Module
 SSM Module Structure

» Hardware Considerations

» Complete Source Listing

Aﬂ MICROWARE"

/\://& MICROWARE"
Memory Management Units

This section describes the level of support for the various memory
management units (MMU) provided by Microware. Included are:

* Motorola 68451 (typically for 68010 systems)
* Motorola 68851 (typically for 68020 systems)
* Embedded MMUs found on the 68030 and 68040 microprocessors.

The 68451 requires only minor modification before use while the others
are implementation independent.

Instructions and an example are also included for instances where
OEMs may wish to design their own MMU.

Hardware/Software Requirements

The following hardware and software is required for use with the OS-9
System Security Module (SSM):

* 0S-9, Version 2.4 or greater.

* A Memory Management Unit must be installed on the system:
e as adiscrete chip,
» embedded on the microprocessor, or
e as aseparate card.

Versions of SSM040

There are two versions of SSM040. The difference between the two is
the cache mode for supervisor state:

* ssnD40 is write-thru.
* ssn040_cbsup is copy-back.

In both cases the user-state cache mode defaults to write-thru. Select
the appropriate SSM module for the supervisor state cache mode
desired, and then set up cache overrides in the | ni t module cache list
entries to turn on copy-back/etc regions for user-state.

4§XTWCROWARE
Configuring SSM for MC68451 Systems

You may need to modify the code for the MC68451 SSM module for
your particular hardware. A short source file, ssndef s. a, is included
with the OS-9 for 68K Developers Kit distribution to allow you to specify
the base address of the MC68451 chip and the offsets into the Address
Space Table used by the SSM code.

In most cases, you only need to change the device base address. Some
hardware implementations of the MC68451 (specifically the Heurikon
M10/V10 CPU’s) use the DMA portion of the Address Space Table
(AST) instead of the MPU section which is normally used. You should
change the offsets for the AST registers to match your hardware. The
ssndef s. a file has conditional directives to accommodate either the
standard or Heurikon style implementations.

For More Information
Refer to pages 3-4 of the Motorola MC68451 manual, April 1983 for a
complete description of the Address Space Table.

For example, the Eltec VEX CPU has two MC68451 chips located at
$00f a8000 and $00f a8200. The SSM code supplied by Microware
supports only one MMU, so the MMJ_Addr in the ssndef s. a file
should be changed to either $00f a8000 or $00f a8200. You must also
remove the conditional code for the Motorola MVME121 for the Eltec
VEX CPU.

Before: nam ssndef s

tt | definitions for system security
module

kkkhkkkkhkkhkhhkkhkhkhkkhkkhx*x

* This file contains definitions which may need to be

* changed for different applications of the MC68451. These

* include the base address of the MW chip and the Address

* gpace table registers used for the various types of menory
* accesses

opt -1

use <oskdefs. d>
use <systype.d>
opt

psect ssmdefs,0,0,0,0,0

i fndef VME121
VME121 equ 121
endc

i fndef CPUType
CPUType set 0
endc

CPUType set VME121

khkkkkhkhkhhhhkkhhkkhkk

* Define the address of the MW chip
*

i fne CPUType- VME121

MVU_Addr: equ $FE7000 assune heurikon

el se
MVU_Addr: equ $F60000 base address of the mmu for VME121
endc

i feq CPUType- VME121
* AST register definitions for non-Heurikon
*
MWJ_User Dat a: equ $02 offset to user data entry in ast
MVU_User Code: equ $04 to user’s code
MVU_SysData: equ $0A to system data
MWU_SysCode: equ $0C to system code

el se

* AST register definitions for Heurikon

*

MVMU_User Data: equ $12 offset to user data entry in ast
MWJ_User Code: equ $14 for user’s code area
MVU_SysData: equ $1A for systemdata

MVU_SysCode: equ $1C for system code

endc

ends

/5//& MICROWARE"

After: nam ssndef s

ttl definitions for system security
module

khkkkkhkhkhkhhhkkhhkhhhkkhkk

This file contains definitions which may need to be
changed for different applications of the MZ68451. These
include the base address of the MMU chip and the Address
space table registers used for the various types of nenory
accesses

R I

opt -1

use <oskdefs. d>
use <systype.d>
opt |

psect ssndefs, 0,0,0,0,0

khkhkkkhkkkkhkkkhkkkkx*

* Define the address of the MMU chip

*

MVUJ_Addr: equ $FA8000 assume heuri kon

* AST register definitions for Eltec VEX CPU
* Eltec uses the nornal |ayout as described in
* the Mdtorola M68451 manual

*

MWJ_User Dat a: equ $02 offset to user data entry in ast
MWJ_User Code: equ $04 to user’s code
MW_SysDat a: equ $0A to system data
MWJ_SysCode: equ $0C to system code

ends

Once the ssndef s. a file has been modified to match your hardware,
you can assemble ssndef s. a and link it to the ssm r file (the
relocatable code for the MC68451 SSM module) to create the ssm
object code. A makefile is included on the distribution disk for this
purpose.

To accomplish this, follow these two steps:
* Change to the SSM451 directory.
* Enter make ssn¥51.

For example:

$ chd / h0/ MAOS/ OS9/ SRC/ SYSMODS/ SSM SSma51
$ make ssmi51

You can now install the SSM module on your system.

/5//& MICROWARE"

Adding SSM to the OS-9 Bootfile

Step 1.
Step 2.
Step 3.

Three steps are required to add SSM to the OS-9 for 68K Bootfile:

Create anew i ni t module.
Create a new bootfile.
Test SSM operation.

Each step is detailed below.

Step One: Create a New Init Module

To create a new i ni t module, change your working directory to
/ hO/ MADS/ OS9/ 680X0/ PORTS/ <your CPU>.

Edit the system’s syst ype. d file CONFI Gmacro so the string ssm
appears in the Init Module Extension list.

Note

Most systems do not define Ext ens in this macro because the default
extension module (0s9p?2) is defined ini ni t . a if no extension module
list is given in CONFI G

Before: CONFI G macro

Mai nframdc. b "Mtorola VME 110",0
SysStart dc.b "sysgo",0 name of initial nmodule to execute
SysParam dc. b C3CR, 0 paraneter to SysStart
SysDev dc.b "/D0",0 initial systemdisk pathlist
Consol Nm dc. b "/ Term', 0 console term nal pathli st
Cl ockNm dc. b "nt6840", 0 cl ock nodul e nane
endm
* (Ot her default values may be set here)

After: CONFI Gmacro

Mai nfram dc. b "Mtorola VME 110", 0
SysStart dc.b "sysgo",0 nane of initial nodule to execute
SysParam dc. b C$CR 0 paraneter to SysStart
SysDev dc.b "/D0",0 initial systemdisk pathlist
Consol Nm dc. b "/ Ternt', 0 consol e term nal pathlist
Cl ockNm dc. b "nt6840",0 cl ock nodul e nanme
Extens dc.b "o0s9p2 ssni', 0
endm
* (Ot her default values may be set here)

Remake the | ni t module by using the makefile located in the
0OS9/ SRC/ SYSMODS/ | NI T directory.

$ make init ;* Make new init nodul e.

Step Two: Create a New Bootfile

Edit the bootlist file so the SSM you use appears in that list. For
example, ssnB51 for systems using an MC68851.

$ chd MAOS/ OS9/ 680X0/ PORTS/ <your CPU>
$ os9gen /hOfnt -z=bootlist;* Create the bootfile.

Step Three: Test SSM Operation

After making the new bootfile, reboot the system and test the basic
functions of SSM operation. To verify the SSM was found and initialized
correctly, attempt to access a protected area of memory.

One memory area that is protected from all user state accesses is the
Mem Beg address in the system’s syst ype. d file. Most systems have
Mem Beg set to $400.

$ debug ; * Call user state debugger.

dbg: d 400 Access Mem Beg.
0x00000400 - bus error

Access prevented: bus error results.

/5//& MICROWARE"

For More Information
For more information on the maps utility, refer to the Utilities
Reference.

To test the SSM functionality more thoroughly, use the supplied maps
utility. Run maps on all processes in the system and exercise all options
of maps.

$ maps -1 ;* Loop through all processes.

Installation of SSM is now complete.

Creating a System Security Module

This section explains how to write a System Security Module (SSM) for
an 0S-9 system with memory protection hardware that Microware
currently does not support. The code for individual systems varies
considerably, according to the design of the hardware. Source code for
a customized system security module is provided in a later section to
illustrate the memory management principles discussed. The module
you write must accomplish the same tasks, but may accomplish these
tasks in whatever way you deem most effective.

The System Security Module (SSM) protects system memory by
preventing processes from accessing memory not assigned to the
process. Each time a process accesses memory, the memory address
is passed through memory protection hardware which checks the
address to see if the process has access to it. If the address is
protected, a bus error exception is generated. The purpose of the SSM
is to install a group of system service requests which the kernel invokes
when it gives a process access to specific memory blocks.

i Note

The SSM does not provide address translation of any kind, even if the
memory management hardware is capable of this. The OS-9 for 68K
kernel's memory management routines are designed to make the
implementation of an SSM as easy as possible. To accomplish this, the
kernel must make two assumptions about how the protection hardware
works.

* The kernel assumes the memory protection hardware is disabled
during supervisor state accesses.

* The kernel assumes the user state address space may be divided
into equal-sized blocks protected independently of each other.

/5//& MICROWARE"

SSM determines the size of the memory blocks based on the amount of
addressable system memory and the protection hardware being used.
The blocks are usually 4, 8, or 16K bytes each. Smaller blocks are
preferred when possible. A process can access memory in two ways:

e It may be part of a module to which the process links (the process'
primary module is implicitly linked).

* It may be part of the process' data area.

Linked modules are not considered to be owned by a process; they are
owned by the system, and the process has been granted permission to
access them. A process' data area is considered owned by the process,
and must not be accessible to other processes. For each process, the
protection module must keep track of the following:

* The memory blocks the process may access.
* The read/write permissions for these blocks.

* The number of times each block has been made accessible to the
process.

In the example code, each process has associated with its process
descriptor a map of the system memory blocks it may access. This map
Is a copy of the memory protection hardware's task image and contains
read/write permissions for each block in the address space. Two of the
protection module's subroutines, F$Per mi t and F$Pr ot ect , update
this map rather than the hardware. Another map, containing the number
of times specific memory blocks have been made accessible to the
program, is also kept for each process.

SSM Module Structure

The System Security Module must conform to the basic structure of all
0S-9 for 68K modules. It must be a system object module with the
supervisor state attribute. The example code illustrates how the
module’s psect header establishes this. At a minimum, you must
include seven subroutines in the module body:

o Init

o F$Permit

* F$Protect

* F$AIITsk

* F3$DelTsk

* F$ChkMem
- F$GSPUMp

For More Information
For more specific information about memory modules, refer to the OS-9
for 68K Technical Manual.

Except for Init , these subroutines are installed as system calls the
0S-9 for 68K kernel calls at appropriate times. The subroutines are not
large or difficult; the challenge in writing a protection module is deciding
how to make the memory protection hardware conform to OS-9’s
memory protection model. Aside from this, the structure of the module
depends entirely on the system’s specific hardware and the whim of the
programmer.

Input

a3) = SSM global static storage
a6) = system global pointer

/5//& MICROWARE"

Error
cc = carry bit set
Output
dl.w = error code if error
Destroys
The I ni t routine may destroy the values of (d0) and (d1).
Description

I ni t is called by OS-9 during coldstart and serves as the protection
module’s initialization entry point.

I ni t initializes the following:

* Any system global variables.
e The protection hardware.

* SSM service requests.

The name of the memory protection module, usually ssm must be
included in a list of extension module names found in the system
configuration module, i ni t . This informs the kernel to link to the
protection module during coldstart, and if found, to execute its i ni t
entry point. The i ni t entry point is run in system state before any user
state processes have begun. If necessary, the protection module may
declare its own static global (vsect) variables. If a vsect is included, the
vsect data is allocated and cleared at coldstart and a pointer to these
variables is passed to the i ni t routine in the (a3) register.

Note

Initialized variables are not allowed in the vsect. The kernel never
deallocates or reuses the vsect memory. If the SSM service requests
are installed with (a3) intact, the kernel also passes this vsect pointer to
each service routine when it is called. This enables the service routines
to share some private global variables.

Two system global variables are of particular interest to the protection
module:

D _AddrLim Is the highest RAM/ROM address found
by the kernel’s coldstart routine. | ni t
can use D_Addr Li mto determine the
physical block size most appropriate for
the memory protection hardware.

D Bl kSi z Is the system’s minimum memory
allocation size in bytes. The i ni t
routine should reset D_Bl kSi z to the
minimum blocksize the memory
protection hardware can accept. The
value must be an integral power of two
and has a default value of sixteen bytes.

Both D_Addr Li mand D_Bl kSi z are of type long. In the example code,
the protection module allocates global storage to contain a task
allocation table. This table contains one entry for each hardware task
number available to be assigned to a process. Each four-byte entry
contains a pointer to the process assigned to the task number. If the
task number has not been assigned to a process, the entry is NULL.

/5//& MICROWARE"

i Note

Ifi nit returns the carry bit set, cold start aborts and the system does
not come up.

The remaining subroutines, implemented as system calls, are
documented in the OS-9 for 68K Technical Manual. For reference,

these are:

F$Per m t Allow Process Access to Specified
Memory

F$Pr ot ect Remove Process’ Permission to Memory
Block

F$Al | Tsk Ensure Protection Hardware Is Ready

F$Del Tsk Release Protection Structures

F$ChkMem Check Access Permissions

F$GSPUMp Check Access Permissions

Hardware Considerations

The protection module code provided with this manual was designed for
use with a custom designed board providing memory protection without
address translation. The hardware is automatically disabled during
system state processes. The hardware supports up to 64 independent
tasks. It may be configured in one of four ways, depending on the
amount of memory in the system:

Table E-1 System Memory Size

Maximum

Address Space Block Size Number of Blocks
2 Meg 8K 256

4 Meg 8K 512

8 Meg 16K 512

16 Meg 32K 512

A task number (0-63) is stored in the protection unit's hardware task
register to select one of the 64 available tasks. The selected task’s
hardware protection image appears as RAM on the bus at the SPU_RAM
address. The protection image for a task consists of either 256 or 512
contiguous data bytes depending on how the hardware has been
configured.

/5?\ MICROWARE"

Each byte in the protection image contains a two-bit protection mask for
every four blocks of main memory. The protection blocks are arranged
in descending order within each byte. For example:

Table E-2 Protection Image

Byte offset in

image Byte 0 Byte 1 Byte 2 Byte 3 ...etc
Address block# 3210 7654 BA98 FDEC | etc.
Protection bits WEWEWEWE O WEWEWEWE WEWEWEWE WA W W

The software protection image is an exact copy of the protection map
used by the hardware.

Complete Source Listing

i Note

Previous versions of the System Security Module were called the
System Protection Unit (SPU). As a result, the source code used in this

manual refers to SPU rather than SSM.

Customized 68020 protection module

Task Allocation routines -
nam Task
00000010 Edition equ 16
00000c01 Typ_Lang equ
0000a000 Attr_Rev equ
psect
use <oskdefs. d>
opt -1

Khkkhkkhhhhkhhhhhhhhhkkhkkhhhkhkkk*x

Al l ocation routines
current edition nunber

(Syst nk<8) +nj ct
((ReEnt +SupSt at) <<8) +0
spu, Typ_Lang, Attr_Rev, Edition, 0, Init

* System Protection Unit (SPU) hardware definitions

00000040 MAXTASK equ 64

01e00000 SPU_RAM equ $1e00000
addr)

01e80000 SPU_St at equ $1e80000

01d00000 SPU_Ct | equ $1d00000

01d80000 SPU_Task equ $1d80000

total nunber of SPU tasks avail abl e
SPU map i mage RAM area (uses odd

address of SPU status register
address of SPU control register
address of SPU task register

* SPU task RAM protection bits (in map inmage)

290000001

00000001 ReadPr ot equ

00000002 Wit Prot equ 990000010

enabl e read protect
enable wite protect

* SPU status register (currently uninpl enented)

00000001 E_SPU equ %90000001
00000002 E_|IO equ %90000010
00000004 E_Ti meO equ %90000100
00000008 E_Parity equ %90001000
* SPU control register bits

00000000 Men2MB equ %90000000
00000001 Menm#VB equ %90000001
00000002 MenBMB equ %90000010
00000003 Menl6MB equ %90000011
00000008 EnabSPU equ %90001000
00000010 EnCache equ %90010000

0000 0020 SPUSI zes dc. |

0010 0d0d BI kSi zes dc. b 13,13, 14,15

SPU error

1/0 bus error
time out error
parity error

two negabyte address space

four megabyte address space

ei ght megabyte address space

si xt een negabyte address space (nmax)
enabl e SPU when set

enabl e 68020 inst cache (hardware)

$200000, $400000, $800000, $1000000

correspondi ng bl ock sizes (2"n)

/5?\ MICROWARE"

0014 0100 SPUBI ks dc. w 256, 512,512,512 correspondi ng nunber of SPU bl ocks
EEEE RS EEEEEEEEEEEEEEEEEEEEEEE SRS

* SPU gl obal variable definitions

* NOTE: this nenory is allocated and cleared, but NOT initialized by 0S-9

vsect
00000000 ds.b 1 reserved
00000001 S_BlkBit ds. b 1 system bl ock size as a power of 2
00000002 S_SPUBI ks ds.w 1 # of blocks the addr space is div into
00000004 S_TskTbl ds. | MAXTASK SPU task allocation table
00000000 S_MenSi z equ . size of gl obal storage
00000000 ends

Khkkkkhhkkhhhhhhkhhkhkhhkhkhkhkkkhkkkk*x

* SPU process variable definitions

00000000 org 0

00000000 P_Task do. w 1 task nunber assigned to process
00000002 P_BI kCnt do. | 1 ptr to block count map
00000006 P_SPUI ng equ . begi nning of SPU i nage nep
K e e e e e e e e e m— - -

* | task number |

A EEREEREEE R EE R |

* | ptr to blk counts +---.

M R R R R |

* | SPU i nage | |

* | (64 or 128 bytes) | |

L (PSS | <--"

* | block count map |

* | (256 or 512 bytes)|

khkkkhhhkhkhhhkkhhhhhkhhhkhkhhkkhkkkh*k

* Subroutine Init

* Called by OS-9 coldstart to initialize SPU hardware
* and rel ated gl obal variables.

* Passed: (a3)=SPU gl obal data ptr

* (a6) =system gl obal ptr

* Returns: none

* Destroys: dl

* Data: D AddrLim D Bl kSiz

Init:
001c 48e7 novem | d0/d2-d3/a0-al, -(a7) save regs
0020=226e novea.| D _AddrLin{a6),al get highest accessable address
0024 41fa | ea SPUSi zes(pc), a0 tabl e of possible SPU bl ock sizes
0028 7003 noveq #3, dO
002a b3d8 I nit SP10 crpa. | (a0) +, al woul d this spu size be |arge enough?
002c 53c8 dbl s do, I ni t SP10 keep searching if not
0030 625c bhi . s InitErr abort if address space too |large
0032 0a00 eori.b #%9011, dO convert to SPU ctl word size
0036 0000 ori.b #EnabSPU! EnCache, d0 add SPU (& cache) enable bit(s)
003a 13cO nmove. b do, SPU_Ct | enabl e SPU
0040 0240 andi.w #%9011, dO strip out SPU bl ocksi ze index
0044 7600 noveq #0, d3
0046 163b nove. b Bl kSi zes(pc, d0.w), d3 get size of spu block power of 2
004a 1743 nove. b d3,S Bl kBit(a3) set it
004e 07c3 bset d3, d3 convert to nunber
0050 4203 clr.b d3 cl ear extraneous bits

0052=2d43 nove. | d3, D_BI kSi z(a6) reset system bl ock size

0056 d040 add. w do, do tinmes two bytes per entry

0058 363b move.w SPUBI ks(pc, d0.w), d3 get nunber of spu bl ocks
005c 3743 move.w d3, S_SPUBI ks(a3) save nunber of SPU bl ocks
0060 7400 noveq #0, d2cl ear SPU mappi ng RAM
0062 723f nmoveq #MAXTASK-1,d1 start with highest task nunber
0064 e44b Isr.w #2,d3 di vide SPU bl ocks by 4 bl ocks per word
0066 5343 subqg.w #1,d3 m nus one for dbra
0068 33cl I nitSP20 nove. w dl, SPU _Task sel ect task
006e 207c movea. | #SPU_RAM a0 get SPU mappi ng RAM ptr
0074 3003 nove. w d3, do nunmber of words per task
0076 10c2 | nit SP30 nove. b d2, (a0) + clear mappi ng RAM for task
0078 51c8 dbra do, I ni t SP30 repeat for all pages of task
007c 51c9 dbr a di, | ni t SP20 repeat for all tasks
0080 43fa | ea SvcThl (pc), al
0084=4e40 0s9 F$SSve install SPU systemcalls
0088 4cdf Init99 movem | (a7)+,d0/d2-d3/a0-al restore regs
008c 4e75 rts return carry clear
008e=003c InitErr ori #Carry, ccr return carry set
0092=323c nove.w #E$NoTask, d1 return (sic) error
0096 60f0 bra.s I ni t99

SvcTbl
0098=0000 dc. w F$Del Tsk+SysTrap, Del Tsk-*-4
009c=0000 dc. w F$Al | Tsk+SysTrap, Al | Tsk-*-4
00a0=0000 dc. w F$Perm t +SysTrap, Permit-*-4
00a4=0000 dc. w F$Pr ot ect +SysTrap, Protect-*-4
00a8=0000 dc. w F$ChkMem+SysTr ap, ChkMem *- 4
00ac=0000 dc. w F$GSPUMp, GSPUMp- * - 4
00b0O ffff dc. w -1 end of table
khkkkkhkkhkhkkhhhhkhkhhkhkhhdhkhhhhkhhkhkdkkkk
* Subroutine Permt
* Update SPU i mage in user process to allow access to a
* specified nenory area.
* Passed: dO.|=size of area
* d1. b=perm ssion requested (Read_/Wite_/ Exec_)
* (a2) =address of area requested
* (a3)=SPU gl obal data ptr
* (a4d) =process descriptor requesting access
* (a6) =system gl obal ptr
* Returns: cc=carry bit set, dl.w=error code if error
* Destroys: none
* Data: S BIkBit
* Calls: none

Permt:
00b2 48e7 movem | dO-d3/a0-a2, -(a7) save regs
00b6 4a80 tst.l do zero size requested?
00b8 6700 beq Perm t 90 exit if so
00bc 74ff noveq #-1,d2 sweep reg
00be=0801 bt st #WiteBit, dl write pernission requested?
00c2 6706 beq. s Perm t 10 continue if not
00c4 0202 andi . b #"(ReadProt+WitProt),d2 allow reads and wites
00c8 600a bra.s Perm t 20 conti nue
00ca 0201 Permit10 andi . b #Read_+Exec_, d1 read or exec permni ssion request?
00ce 6772 beq. s Perm t 90 exit if not
00d0 0202 andi .b #"ReadProt,d2 allow reads

00d4=4aac Permt20 tst.l P$SPUMEN(a4) is SPU process nmenory allocated?

00d8 6604
00da 616¢c
00dc 6564
00de 7600 Permt25
00e0 162b
00e4 220a
00e6 d081
00e8 5380
0Oea e6a8
00ec e6a9
00ee 9041
00f0 1601
00f2 0203
00f 6 d603
00f 8 e73a
00f a=262c
00fe 6714
0100 c78c
0102 48e7
0106 4cef
010c 6la4
010e c78c
0110 4cdf
0114=08ec Perm t 30
011a=246¢
0lle 226a
0122 41lea
0126 3601 Permt40
0128 e44b
012a c530
012e 5231
0132 6404
0134 5331
0138 e5la Perm t50
013a 5241
013c 51c8
0140 7000
0142 4cdf Perm t90
0146 4e75

bne. s
bsr.s
bcs. s
noveq
nove. b
nove.
add. |
subq. |
I'sr.l
Isr.l
sub. w
nove. b
andi . b
add. b
rol.b
nove. |
beq. s
exg
movem |
novem |
bsr.s
exg
novem |
bset
novea.
novea.
| ea
nove. w
Isr.w
and. b
addq. b
bcc. s
subq. b
rol.b
addq. w
dbra
noveq
novem |
rts

Perm t 25
Al | SPU
Per mi t 90
#0, d3

/5?\ MICROWARE"

continue if so
al |l ocate SPU i nage & bl ock counts
abort if error
sweep register

S Bl kBit(a3),d3 get SPU bl ock size power (27n)

a2, dl
di, do
#1, d0O
d3, do
d3, d1
d1, do
di, d3
#99011, d3
d3, d3

copy beginning bl ock address
formend of requested area (+1) ptr
end of requested area

convert end addr to last block num
convert address to bl ock nunber
convert to nunber of blocks (-1)
copy begi nning bl ock nunber

strip off lower two bits

nmake SPU bit offset of first block

d3,d2shift permbits into initial position
P$DbgPar (a4),d3 is this program bei ng debugged?

Perm t 30
d3, a4

do-d1, - (a7)

8(a7),do-d1

Permit

a4, d3

(a7) +,do-d1

continue if not

switch to par’s debugger’s process desc

save regs
restore original size of area, perm
updat e parent (debugger) SPU i mage
restore process descriptor ptr
restore regs

#l ngChg, P$St at e(a4) mark SPU i mage change
P$SPUMen(a4), a2 get SPU process menory ptr
P_Bl kCnt (a2),al ptr to SPU map bl ock count
P_SPUI ng(a2),a0 ptr to SPU i nage

di, d3
#2,d3
d2, (a0, d3.w)
#1, (al,d1.w
Perni t 50
#1, (al,dl.w)
#2,d2
#1, d1
do, Pernit40
#0, dO

copy bl ock nunber
convert bl ock nunber to byte of fset
unprotect block in SPU image
i ncrenent SPU bl ock count
continue if no overflow

reset to max count (255) <<?? glitch>>
shift mask for next bl ock
nove to next bl ock
repeat until end of area requested
return carry clear

(a7)+,d0-d3/a0-a2 restore regs

khkkkhkhhkhkhhhkkhhhhhkhhhkkhhkkhkkkh*k

* Subroutine AllSPU

* Allocate and initialize SPU structures for new process
* The data size per process is either 640 or 320 bytes.
* Passed: (a4)=process descriptor ptr

* Returns: cc=carry set

* Destroys: dl
0148 48e7 All SPU
014c 7000

014e 302b

0152 2200

0154 e480

0156 2400

0158 do081

015a dObc
0160=4e40

novem |
noveq
nove. w
nove. |
asr. |
nove.
add. |
add. |
0s9

dl. w=error

code if error

d0/ d2/ al-a2,-(a7) save regs

#0, dO

sweep register

S_SPUBI ks(a3),d0 get nunber of SPU bl ocks per map

do, d1

#2,d0

do, d2

di, do
#P_SPUl ng, dO
F$SRqMem

save size of block counts

divided by 4 entries per map byte
save size of inage map

get conbined size

add size of non-map vari abl es
request system nmenory

0164 6530 bcs. s Al | SPU90 abort if error

0166=294a nmove. | a2, P$SPUMen({ a4) save ptr to SPU nenory

0l6a 426a clr.w P_Task(a2) initialize task nunber

016e 43f2 | ea P_SPU ng(a2,d2.1),al get ptr to bl ock count map
0172 2549 nmove. | al, P_Bl kCnt (a2) save ptr to block counts

0176 45ea | ea P_SPU ng(a2),a2 get ptr to inage map

017a edda Isr.w #2,d2 div size of image map by 4 bytes/long
017c 5382 subq. | #1,d2 m nus one for dbra

017e 72ff noveq #-1,d1

0180 24c1 Al | SPULO nmove. | di, (a2) + initialize SPU inage

0182 51ca dbra d2, Al l SPU10

0186 302b move.w S SPUBI ks(a3),d0 get size of block count map
018a e448 Isr.w #2,d0 divide by 4 bytes per long

018c 5380 subq. | #1, d0 m nus one for dbra

018e 7200 noveq #0, d1

0190 24c1 Al | SPU20 nmove. | di, (a2) + initialize block counts

0192 51c8 dbra do, Al | SPU20

0196 4cdf Al |l SPU0 movem | (a7)+,d0/d2/al-a2 restore regs

019a 4e75 rts

kkkhkkkhhkhkhhkkhkkhhkkkhkkhkkkhkkkx

* Subroutine Protect

* Update SPU i mage in user process to disallow access to a
* specified nenory area.

* Passed: dO.|=size of area

* (a2) =address of area returned

* (a3)=SPU gl obal data ptr

* (a4d) =process descriptor renoving access
* (a6) =system gl obal ptr

* Returns: cc=carry bit set, dl.w=error code if error
* Destroys: none
* Data: S BIkBit

Prot ect:
019c 48e7 movem | dO-d3/a0-a2, -(a7) save regs
0l1a0 4a80 tst.l do zero size returned?
0la2 676¢ beq. s Prot ec90 exit if so
Olad=4aac tst.l P$SPUMEN(a4) SPU i nage al | ocat ed?
0l1a8 6766 beq. s Prot ec90 exit if not (strange)
Olaa 7600 noveq #0, d3 sweep register
Olac 162b nove. b S Bl kBit(a3),d3 get SPU bl ock size power (27n)
01b0 220a nmove. | a2, d1 copy beginning bl ock address
01b2 do081 add. | di, do formend of requested area (+1) ptr
01b4 5380 subq. | #1, d0 end of requested area
01b6 e6a9 Isr.l d3, d1 convert address to beginning bl ock num
01b8 eb6a8 I'sr.l d3, do convert end addr to last block nunber
Olba 9041 sub. w d1, do convert to nunber of blocks (-1)
Olbc 1601 nmove. b di, d3 copy begi nning bl ock nunber
0lbe 0203 andi . b #99011, d3 strip off lower two bits
01c2 d603 add. b d3, d3 make SPU bit offset of first block
0lc4 7403 nmoveq #ReadProt +WitProt,d2 protection mask
01c6 e73a rol.b d3, d2 shift mask into initial position
01c8=262c nmove. | P$DbgPar (a4),d3 is this program bei ng debugged?
Olcc 670e beq. s Prot ec20 continue if not
Olce c78c exg d3, a4 switch to parent debugger’s proc desc
01d0 2fO00 nmove. | do, - (a7) save reg

01d2 202f nmove. | 4(a7), do restore original size of area

/5?\ MICROWARE"

01d6 61c4 bsr.s Pr ot ect updat e parent (debugger) SPU i mage
01d8 c78c exg a4, d3 restore process descriptor ptr
0lda 201f nove. | (a7)+,do restore reg

01dc=08ec Protec20 bset #1 mgChg, P$St at e(a4) mark SPU i mage change
01e2=246¢ novea.| P$SPUMen(a4), a2 get ptr to SPU process nenory
0le6 226a novea.|l P_BlkCnt(a2),al ptr to SPU nap bl ock count

Olea 4lea | ea P_SPUI ng(a2),a0 ptr to SPU i nage

Olee 2608 nmove. | a0, d3 any all ocated?

01f0 671e beq. s Pr ot ec90 exit if not

01f2 5331 Protec40 subq. b #1, (al,d1.w) decrenent SPU bl ock count

01f6 6706 beq. s Pr ot ec50 protect block if zero

01f 8 640c bcc. s Pr ot ec60 skip if no underflow

01fa 4231 clr.b (al,dl.w reset bl ock count <<possible glitch>>
01f e 3601 Protec50 nove.w di,d3 copy bl ock nunber

0200 e44b Isr.w #2,d3 convert bl ock nunber to byte of fset
0202 8530 or.b d2, (a0, d3.w) protect block in SPU i mage

0206 5241 Protec60 addq.w #1,d1 nove to next bl ock

0208 e5la rol.b #2,d2 shift mask for next bl ock

020a 51c8 dbra do, Prot ec40 repeat until end of area requested
020e 7000 noveq #0, dO clear carry

0210 4cdf Protec90 nmovem | (a7)+, dO-d3/a0-a2 restore regs

0214 4e75 rts

khkhkkkhkkkkhhkkhhkkhkhhkkkkhkkhkkkkk*

* Subroutine AllTsk

* Al l ocate task nunber to current process; update SPU inmage if
* necessary. The SPU task register is set to the allocated nunber.
* Passed: (a3)=SPU gl obal data ptr

* (a4d)=current process descriptor ptr (to allocate)

* (a6) =system gl obal ptr

* Returns: cc=carry set, dl.w=error code if error

* Destroys: dl

* Data: S TskThbl, S _SPUBI ks

* Calls: FindTsk

* Note: the task table is an array of pointers to

* the process descriptor each task is using.

Al'l Tsk:
0216 48e7 movem | dO/al-a2,-(a7) save regs
021a=246¢ novea. | P$SPUMen(a4), a2 get SPU process nenory
021e 302a nove.w P_Task(a2),d0 task already assigned to process?
0222 6712 beq. s Al | Tsk05 continue if not
0224=08ac bclr #l mgChg, P$St at e(a4) test/clear inage change flag
022a 663c bne. s Al | Tsk50 update SPU i mage if changed
022c¢ 33cO nmove. w d0, SPU_Task sel ect task
0232 6000 bra Al'l Tsk99 exit
0236 43eb Al |l Tsk05 | ea S TskTbl +(MAXTASK*4) (a3),al end task table (+1) ptr
023a 303c nove.w #MAXTASK- 2, dO# of tasks (-1 avoid task #0, -1 dbra)
023e 4aal All Tsk10 tst.l -(al) unused task?
0240 57c8 dbeq do, Al 'l Tsk10 keep searching if not
0244 6714 beq. s Al | Tsk20 continue if unused task nunber found
0246 6100 bsr Fi ndTsk find an appropriate task to use
024a 6500 bcs Al l Tsk99 abort if error
024e 3200 nove.w doO, d1 copy task nunber
0250 e541 asl . w #2,d1 tinmes four bytes per |ong
0252 43eb |l ea S _TskThl (a3),al get task table ptr

0256 d2c1 adda.w di,al formptr to task table entry

0258 5340 subg.w #1,d0

025a 228c Al | Tsk20 nmove. | a4, (al) mark task nunmber in use by this
process

025c=08ac belr #1 mgChg, P$St at e(a4) cl ear inmage change flag
0262 5240 addgq.w #1,d0O

0264 3540 move.w dO, P_Task(a2) set process task nunber

* Update SPU napping RAM from process SPU i nage.
0268 48e7 Al l Tsk50 movem | d1-d7/ a0, -(a7) save regs

026¢c 33c0 move. w dO, SPU_Task set SPU task register

0272 4lea | ea P_SPU ng(a2), a0 get process SPU i mage ptr

0276 2008 nove. | a0, do none al |l ocated? (should be inpossible)
0278 673a beq. s Al 'l Tsk90 exit if so

027a 227c movea. | #SPU_RAM al get base of SPU i mage RAM

0280 0c6b cnpi.w #256,S_SPUBI ks(a3) 256 bl ocks?

0286 6718 beq. s Al'l Tsk60 move only 64 longs if so

0288 4cd8 movem | (a0)+, dO-d7 updat e SPU i mage

028c 48e9 movem | dO0-d7,0*4(al) (128 pages)

0292 4cd8 movem | (a0)+, dO-d7

0296 48e9 movem | dO0-d7,8*4(al) (128 pages)

029c 43e9 | ea 16*4(al), al nmove to second half of SPU i nage
02a0 4cd8 Al |l Tsk60 movem | (a0)+, dO-d7

02a4 48e9 movem | dO0-d7,0*4(al) (128 pages)

02aa 4cd8 movem | (a0) +, dO-d7

02ae 48e9 movem | dO0-d7,8*4(al) (128 pages)

02b4 4cdf Al Tsk90 movem | (a7)+,d1l-d7/a0 restore regs

02b8 4cdf All Tsk99 movem | (a7)+,d0/al-a2 restore regs

02bc 4e75 rts exit
EEEEEEEEEEEEEEEEREEEEEREEEREEEEESESE]

* Subroutine FindTsk

* Find a task nunber to assign to a process. Process currently
* assigned a task nunber are examined to find the |east active.

* Its task nunber is then deallocated for use by the new process.
* Passed: (al)=Task Table ptr

* (a6) =system gl obal data ptr
* Returns: dO.w=task nunber found
* cc=carry set, dl.w=error code if error

* Destroys: dl
* Queue preference (high to |ow
02be= 00 QPref dc. b Q Wit 8 wait queue - use immediately if found

02bf= 00 dc. b Q _Dead 7 dead process - use imediately
02c0= 00 dc. b Q Sl eep 6 tinmed sleep queue
02cl= 00 dc. b Q_Sl eep 5 untimed sl eep queue
02c2= 00 dc. b Q _Debug 4 inactively debuggi ng
02c3= 00 dc. b Q Event 3 event queue
02c4= 00 dc. b Q Active 2 active queue, lowest priority
02c5= 00 dc. b Q Currnt 1 currently running
00000008 Qrypes equ *- QPr ef nunber of entries in table
* Regi ster use:
* dO=t ask | oop counter a0=tenp proc desc ptr
* dl=tenp queue type al=task table entry ptr
* d2=task priority pref a2=preference tbl ptr

* d3=best preference found a3=best process found
02c6 48e7 FindTsk movem | d2-d3/a0-a3,-(a7) save regs
02ca 7600 noveq #0, d3 clear 'best’ queue type found

02cc 303c
dbr a)

02d0 2059
02d2=1228
02d6 45fa
02da 7407
02dc b2la
02de 57ca
02e2 5242
02e4=b23c
02e8 660a
02ea=082a
02f 0 6602
02f2 5342
02f4 b403
02f6 651c
02f8 6210
02fa b43c
02fe 6214
0300=3228
0304=b26b
0308 640a
030a 1602
030c 2648
030e b63c
0312 6408
0314 51c8
0318 4a03
03la 6718
031c 7000
031e=206b
0322 2008
0324 670e
0326 3028
032a 4268
032e 4cdf
0332 4e75
0334=323c
0338=003c
033c 60f0

Fi ndTsk10

Fi ndTsk20

Fi ndTsk30

Fi ndTsk40

Fi ndTsk50

Fi ndTsk60

Fi ndTsk90

Fi ndTskER

nove. w

novea.
nove. b
| ea
noveq
cnmp. b
dbeq
addq. w
cnmp. b
bne. s
bt st
bne. s
subqg. w
cnp. b
blo.s
bhi . s
cnmp. b
bhi . s
nove. w
cnp. w
bhs. s
nove. b
novea. |
cnp. b
bhs. s
dbra
tst.b
beq. s
noveq
novea.
nove. |
beq. s
nove. w
clr.w
novem |
rts
nove. w
ori
bra.s

/5?\ MICROWARE"

#MAXTASK- 1, d0 nunber of tasks available (-1 for

(al)+, a0 get (next) task’s proc desc ptr
P$Queul D(a0), d1 get the process’ queue ID
QPref(pc), a2 get queue type preference thl ptr
#QTypes- 1, d2 nunber of table entries (-1 for dbra)

(a2)+,d1 find preference of queue type
d2, Fi ndTsk20 repeat until found

#1,d2 adj ust preference

#Q_Sl eep, d1 is process in sleep queue?

Fi ndTsk30 continue if not

#Ti Sl eep, P$St at e(a2) tinmed sl eep?

Fi ndTsk30 continue if so

#1,d2 nake sl eep(0) |lower than tined sleep
d3, d2 is this least active so far?
Fi ndTsk50 keep searching if not

Fi ndTsk40 updat e best task found if so
#2,d2 is process current or active?
Fi ndTsk50 skip it if not

P$Prior(a0),dl get task’'s priority
P$Prior(a3),dl is its priority |owest so far?

Fi ndTsk50 skip it if not

d2, d3 save best queue type found

a0, a3 save ptr to best process (task) found
#7,d3 inert process found?

Fi ndTsk60 use it if so

do, Fi ndTsk10 search for nost inactive process
d3 ANY avai |l abl e tasks found (surely)
Fi ndTskER abort if not

#0, dO sweep register

P$SPUMen(a3), a0 get chosen process’ SPU nenory

a0, do any?

Fi ndTskER abort if not (should be inpossible)
P_Task(a0),d0 get task nunber chosen

P_Task(a0) mark it stolen

(a7)+,d2-d3/ a0-a3 restore regs

#E$NoTask, d1 error: no avail able tasks
#Carry, ccr return carry set
Fi ndTsk90 abort

khkhkkkhkhkhkkhhkkhhkkhkhhkhkhkhkkhkkkkkx

* Subroutine Del Tsk
* Cal | ed when a process terminates (TernProc) to rel ease
* the SPU structures structures used by the process

data ptr

(a4d) =process descriptor ptr to clear

* Passed: (a3)=SPU gl oba

*

* (a6) =syst em gl oba

* Returns: cc=carry set

* Destroys: dl

* Data: S TskTbl, S SPUBI ks
Del Tsk

033e 48e7 novem |

0342=246¢ novea.

0346 200a nove.

0348 672e beq. s

ptr
dl.w=error code if error

do/ a0/ a2, - (a7) save regs

P$SPUMENT(a4) , a2

a2, do is SPU nenory all ocated?
Del Tsk90 exit if not

034a 302a move.w P_Task(a2),d0 get process task nunber

034e 6710 beq. s Del Tsk10 continue if none (or task #0)

0350 426a clr.w P_Task(a2) clear process task

0354 b07c cnp. w #MAXTASK, dO is task nunber in range?

0358 6406 bhs. s Del Tsk10 continue if not

035a €540 asl . w #2,d0 task nunber tines 4 bytes per entry
035c 42b3 clr.l S TskTbl (a3, d0.w) rel ease task nunber

0360 7000 Del Tsk10 nmoveq #0, dO sweep register

0362 302b move.w S SPUBI ks(a3),d0 get nunber of SPU bl ocks per nap
0366 €480 asr. | #2,d0 divided by 4 entries per map byte
0368 d06b add. w S SPUBI ks(a3),d0 add sz of SPU blk ct map

036¢c d07c add. w #P_SPUI ng, dO add size of pre-inmage variables
0370=42ac clr.l P$SPUMeNT(a4)

0374=4e40 0s9 F$SRt Mem return system nmenory

0378 4cdf Del Tsk90 movem | (a7)+,d0/ a0/ a2 restore regs

037c 4e75 rts

hhkhkhkkhkhhkhhhkhhhhkhhkhkhxkhhkxhkkkk ok

*

*

Subr out i ne ChkMem
Check SPU image in user process to determine if access
to a specified nmenory area is allowed.
Passed: dO.|=size of area
d1. b=perm ssion requested (Read_/Wite_/ Exec_)
(a2) =address of area requested
(a3)=SPU gl obal data ptr
(ad) =process descriptor requesting access
(a6) =system gl obal ptr
Returns: cc=carry bit set, dl.w=error code if error
Destroys: none
Data: S Bl kBit
Cal I's: none

ChkMem
037e 48e7 movem | dO-d3/ a0, - (a7) save regs
0382 4a80 tst.l do zero size requested?
0384 675a beq. s ChkMenB0 exit if so
0386 7400 nmoveq #0, d2 sweep reg
0388=0801 bt st #WiteBit, dl wite request?
038c 6704 beq. s ChkMentO continue if not
038e 843c or.b #WitProt, d2 check for wites
0392 0201 ChkMentlO andi . b #Read_+Exec_, d1 read (or exec) request?
0396 6704 beq. s ChkMenR0 continue if not
0398 843c or.b #ReadPr ot , d2 check reads
039c 4a02 ChkMenR0 tst.b d2 read and/or wite request?
039e 6740 beq. s ChkMenB0 exit if not
03a0=4aac tst.l P$SPUMEN(a4) is SPU nenory al |l ocated?
03a4 6742 beq. s ChkMenEr abort if not (very strange)
03a6 7600 noveq #0, d3 sweep register
03a8 162b nmove. b S Bl kBit(a3),d3 get SPU bl ock size power (27n)
03ac 220a nmove. | a2, d1 copy beginning bl ock address
03ae d081 add. | di, do formend of requested area (+1) ptr
03b0 6536 bcs. s ChkMenEr abort if address w aparound
03b2 5380 subq. | #1, d0 end of requested area
03b4 e6a8 I'sr.l d3, do convert end address to last bl ock num
03b6 e6a9 Isr.l d3, d1 convert address to block nunber
03b8 9041 sub. w di, do convert to nunber of blocks (-1)

03ba 1601 nove. b di, d3 copy begi nning bl ock nunber

03bc 0203
03c0 d603
03c2 e73a
03c4=206¢c
03c8 41e8
03cc 3601
03ce ed4b
03d0 1630
03d4 c602
03d6 6610
03d8 e5la
03da 5241
03dc 51c8
03e0 7000
03e2 4cdf
03e6 4e75
03e8=3f 7c
03ee=003c
03f2 60ee

/5?\ MICROWARE"

andi . b #99011, d3 strip off lower two bits
add. b d3, d3 make SPU bit offset of first block
rol.b d3, d2 shift request bits into init position
novea. | P$SPUMen{a4), a0 get ptr to SPU process nenory
| ea P_SPUI ng(a0), a0 ptr to SPU i nage
ChkMen4d0 nove.w di,d3 copy bl ock nunber
Isr.w #2,d3 convert bl ock nunber to byte of fset
nove. b (a0, d3.w),d3 get SPU i mage byte
and. b d2, d3 mat ch request with SPU i mage
bne. s ChkMenEr abort if illegal request
rol.b #2,d2 shift mask for next block
addq.w #1,d1 nove to next bl ock
dbra d0, ChkMemd0 repeat until end of area requested
ChkMend0 noveq #0, dO return carry clear

ChkMend5 novem | (a7)+, d0-d3/a0 restore regs
rts

ChkMentr nove.w #E$BPAddr, 6(a7) return |1l egal block addr error
ori #Carry, ccr return carry set
bra.s ChkMend5 exit

Khkhkkkhhkkhhhhkhhkhhkhhhkkkhkkhkhkkkk*x

* Subroutine GSPUVp
* Return data about specified process’ nenory nap

* Passed

* Returns

* Returns:

03f4 48e7
03f8 2002
03fa 2448
03fc 7203
03fe 6100
0402 6554
0404 2017
0406=4e40
040a 654c
040c=42ad
0410=2269
0414 2009
0416 673a
0418 45e9
041c 2269
0420 7000
0422 302b
0426 e28a
0428 b480
042a 6302
042c 2400
042e 2002
0430 d080

d0. w=process id whose information is returned

d2.1=size of information buffer
(a0)=information buffer ptr

(a3) =SPU gl obal data ptr

(a4) =process descriptor requesting access
(ab)=caller’s register inmage ptr

(a6) =system gl obal ptr
R$d0(a5) =syst em m ni num bl ock si ze
R$d2(a5) =si ze of information buffer used
cc=carry bit set, dl.w=error code if error

GSPUMp: novem | d0/d2-d3/a0-a2, -(a7) save regs
nove. | d2, do copy bl ock size
nove. | a0, a2 copy address
noveq #Wite_+Read_,dl request read+wite perm ssion
bsr ChkMem is menory accessi bl e?
bcs. s GSPUM99 abort if not
nove. | (a7),do restore process id
0s9 F$GProcP get process descriptor ptr
bcs. s GSPUM99 abort if error
clr.l R$d2(a5) default no bytes in buffer
nove. | P$SPUMen(al), al get address of process spu info
nove. | al, do is process spu buffer allocated?
beq. s GSPUMp90 exit if not
|l ea P_SPUI ng(al), a2 get address of protection info
nove. | P_Bl kCnt (al),al get address of spu block count nap
noveq #0, dO sweep register
nove.w S SPUBI ks(a3),d0 get the nunber of SPU bl ocks
Isr.l #1,d2 convert user buffer size to numof bl ks
cnp. | do, d2 enough room for entire nap?
bls.s GSPUMp20 skip if not
nove. | do, d2 copy the entire map

GSPUMp20 nove. | d2, do copy nunber of blocks to nove

add. | do, do convert to bytecount

0432=2b40 nove. | do, R$d2(a5) return the amount of buffer used

0436 671a beq. s GSPUMp90 exit if no bytes to copy

0438 5342 subg.w #1,d2 bl ockcount-1 for dbra(s)

043a 121a GSPUM50 nmove. b (a2)+,dl get the (next) perm ssion byte

043c 7604 nmoveq #4,d3 nunmber of perm ssion bl ocks per byte
043e 7003 GSPUM60 noveq #ReadPr ot +Wi t Prot, dO

0440 c001 and. b di, do strip out bits for current block
0442 10cO nmove. b do, (ao0) + copy bl ock permi ssions to buffer
0444 10d9 nmove. b (al) +, (a0) + copy bl ock count to buffer

0446 e409 Isr.b #2,d1 shift permission bits for next block
0448 5343 subqgq.w #1,d3 dec num of blocks in current permbyte
044a 57ca dbeq d2, GSPUM60 repeat until end of byte or end of buf
044e 56ca GSPUMp70 dbne d2, GSPUM50 repeat if nore bl ocks

0452=2b6e GSPUMp90 nove. | D Bl kSi z(a6), R$d0(a5) the blk size used (clear
carry)

0458 4cdf GSPUMp99 movem | (a7)+,d0/d2-d3/a0-a2 restore regs
045c 4e75 rts
0000045e ends

E Using the OS-9 for 68K System Security Module Aﬂ MICROWARE"

294 0S-9 for 68K Processors OEM Installation Manual

Appendix F: Example ROM Source
and Makefiles

This appendix includes the following topics:

» defsfile
systype.d
sysinit.a

e syscon.c
rombug.make
rom.make

e rom_common.make
rom_serial.make
rom_port.make

* rom_image.make
bootio.c

Aﬂ MICROWARE"

F Example ROM Source and Makefiles Aﬂ MICROWARE"
defsfile

opt f issue formfeeds
use <oskdefs.d>
use systype.d

296 0S-9 for 68K Processors OEM Installation Manual

systype.d

*

* System Definitions for OEM exanpl e.
*

opt -1

pag
EEEEEEEEEEEEEEEEREEEEEREEEREEESEESSESE]
* Edition History

* date conment s
*

* 93/ 05/ 21 genesis
* 93/ 10/ 28 updated for OS-9 V3.0 XYz

*

* test exanple on WMEL62

*

VMEL162 equ 162
CPUType set VME162

hhkhkhkkkhhkhkhhhkkhhkhkhxkhkxhkhkkkk k%

* System Menory Definitions

*

* These are used by the MenDefs (for rom) and MenList (for init nodul e)

* macros to describe the systemram structure.
*

VBRBase equ O base address of vectors

RAWect s equ included exception vectors are RAM

i fndef TRANS

TRANS equ $0 no address translation

endc

TRANSLATE equ TRANS

ProbeSi ze equ $1000 bl ock probe size = 4K

DRAMBeg equ 0 physical start of system nmenory

DRAMSI ze equ $100000 assunme 1MB total system nmenory

LoadSi ze equ $20000 rmeke avail abl e 64K for downl oaded ronbug

i fdef RAMLOAD
CPUSI ze equ DRAMSi ze- LoadSi ze
el se NOT RAMLOAD

CPUSI ze equ DRAMSi ze entire DRAM avail abl e for system nenory
endc

MapQut equ $400 vector table space at begi nning of DRAM

* These are the ROM definitions for the on-board ROM sockets

Rom Si ze equ $40000say we have 256K for ROM

Rom Beg equ $FF800000 ROM starting address

Rom End equ Rom Beg+Rom Si ze

Mem Beg
Mem End
Spcl. Beg
Spcl. End

i fdef RAMLOAD
Spc2. Beg

Spc2. End

el se

Spc2. Beg

Spc2. End

endc

equ
equ
equ
equ

equ

equ

equ
equ

/5?\ MICROWARE"

DRAMBeg+MapQut
DRAMBeg+CPUSI ze
Rom Beg

Rom End

Mem End
Mem End+LoadSi ze

0
0

Khkkkkhhkkhhhhkhhkhhkhkhhkkhkkhhkkkk*x

* Hardware type definitions

MPUChI p
CPUTyp

ifeq

| OBase
TERMBase

Ter nBase
ConsType
Cons_Adr

T1Base
Commily pe
Conm_Adr
endc

equ
set

68000 define the mcroprocessor in use
MPUChi p (pay the old |abel)

(CPUType- VMEL162)

equ
equ

equ
equ
equ

equ
equ
equ

$FFF00000
| OBase+$45000 Zil og 85230 SCC

TERMBase+4 SCC port A (console port)
ZA
TernBase consol e devi ce address

TernBase-4 SCC port B (conmunication port for downl oad)
ZB
T1lBase auxilliary device address

Khkkhkhkhhkhkhhhkkhhhhhhkhhhkkhhkhkdhkkhkk

* Configuration nodul e constants
* used only by init nodule

*

CONFI G nmacr o

Mai nFram dc. b "CEM exanple target”, 0

SysStart dc.b "sysgo",0 name of initial nodule to execute
SysParam dc. b O paranmeters to pass to initial nodule
SysDev set 0 ROM based system has no di sk

Consol Nm dc.b "/ternm',0 console term nal pathlist
Cl ockNm dc.b "tk_oenf, 0 cl ock nodul e nane
Extens dc.b "0s9p2 syscache ssm sysbuserr fpu",0

endc

*

* Colored nenory list definitions for init nmodule (user adjustable)

*

align

Menli st
* MenType type, priority, attributes, blksiz, addr Iimts, name, DMA-offset

*

* on-board ram covered by "boot romnenory list" - doesn't need parity iniz

*

MeniType SYSRAM 250, B_USER, ProbeSi ze, Mem Beg, Mem End, OnBoar d, CPUBeg+TRANS
dc.l O termnate this list
OnBoard dc.b "on-board ranf, 0

endm

Khkhkhkkkhhhkhhhkhhhhkhkhkhkhkkhhkkhhkkhhkkkhhkkkkkokkkkkkk

* SCF device descriptor definitions
* (used only by SCF device descriptor nodul es)

*

* SCFDesc: Port,Vector,| RQ evel,Priority, Parity, BaudRate, Driver Name
*

*TERM macr o

* SCFDesc Port, Vector, | RQ evel ,Priority, Parity, BaudRate, Dri ver Nanme
** default descriptor values can be changed here

*DevCon set O

* endm

* These two | abel s are obsol ete under "SysBoot" but are
* still required to link in "boot.a"

*

SysDi sk set 0

FDsk_Vct set O

Khkkhkkhkhhhkhhhhhhkhkhhkkhhkkh k&

* Menory list definitions
*

MenDef s macro
dc.| Mem Beg, Mem End the normal nenory search |ist
dc.1 O
dc.| Spcl. Beg, Spcl. End PROM
|
|
|

dc.| Spc2.Beg, Spc2. EndSpeci al RAM | oad area

dc.l O

dc.l 0,0,0,0,0,0,0,0,0,0,0,0 free bytes for patching
endm

opt |

4§XIWCROWARE
sysinit.a

* Syslnit: performsystemspecific initialization (part 1)
*

Syslnit:

reset reset all system hardware that can be

nmovea.| VBRPatch(pc),a0 get (patchable) vbr address
novec ao, vbr set vbr

i fdef RAMVects

*

* copy reset vectors fromthe rominto ram (rom appears at $0 for

* first 4 cycles after a reset, then it’'s the ram
*

nmove. | VectThbl (pc), 0(a0) copy reset vectors across
nove. | Vect Tbl +4(pc), 4(a0)
endc

SIExit:
ROVPAK1

bra SysRetrn return to boot.a

Khkhkhkkhhkhkhkhhhkhhkhhhhhhkkhkhhkhkhhkhkhkkhkkhkhkkhhkhhkkhhkk ok ok kkkkkk ok k%

* SlnitTwo: performsystemspecific initialization (part 2)
*

Sl ni t Two:
ROVPAK2

rts

khkhkkhkhkhkhkkhkkkhkkkkkk
*
* UseDebug: return status of system debugger (enabl ed/ not enabl ed)
*
UseDebug:
btst.b #0, Cal | DBug(pc) test the debug flag
eori.b #Zero,ccr flip the zero bit
rts

Khkkkkhhkhkhhhkhhhkhhhhhhkkhkk

* entry points for

i f ndef CBOOT
_stklimt: dc. | $80000
_stkhandler: rts

endc

ends

* end of file

syscon.c

2 1
I syscon.c: Boot configuration routines for the OEM exanpl e target. !

E IS NN T TS +
! Edition History: !

! # Dat e Comment s By !

1 e e e e e e e e e e e e e e e e e I

! 01 93/10/28 Cenesis. ats !

| o f e e e eeeeeaaaoo *
#i ncl ude <sysboot . h>

#i f def NOBUG

int errno;

u_char trapfl ag;
#endi f

#i fdef _UCC

u_int32 _stklimt = 0x80000;/* big to limt _stkhandler calls
fromclib.l calls */

#endi f
/*
* Declarations for real functions
*/
extern error_code sysreset (),
bi nboot () ;
char*nul str = ""; /* only need one of these */
#i fdef _UCC
/*
* Dummy _stkhandl er routine for clib.l calls
*/
_stkhandl er ()
{
}
#endi f
/*

* getbootmethod: This function allows the devel oper to sel ect
* the booting method al gorithm best suited for the system

*
/
int getboot et hod()
{
/*
* Initialize the boot drivers.
*

* NOTE: The order of initialization deternines the order of

/5?\ MICROWARE"

* priority when using the "AUTOSELECT" booting net hod.
*/
i ni z_boot _driver(binboot, nulstr,
"Boot Manual |y Loaded Bootfile Inage", "m");
i ni z_boot _driver(ronmboot, "ROM', "Boot fromROM, "ro");
ini z_boot_driver(loadrom "ROM', "Load fromROM, "Ir");
ini z_boot_driver(sysreset, nulstr, "Restart the systen, "q");

/* vflag = TRUE, */
return USERSELECT;

* getboottype: Wien the boot nmethod (determ ned by the above function)
* is set to SWTCHSELECT, this function allows the devel oper to sel ect
* the actual booting type (device, ROM etc...) according to hardware
* switches, non-volatile RAM or hard-code a single boot device type
* NOTE: for this devpak, this is a dumy function.
*/

Bdri vdef getboottype()

{

}

return NULL;

rombug.make

Makefile for OEM exanple ROM wi th ROVBUG

-b

TYPE = ROVBUG

RELSDI R = RELS/ $(TYPE)

OBJDI R = CMDS/ BOOTOBJS/ $(TYPE)

ROMBUG custom zation flags

RBUG = " RBUG=- aROVBUG'
CBUG =

TDIR = "TYPE=$(TYPE)"
TARGET =

ROVDBG =

Testing options

MBUGTRC = #" MBUGTRC=- aMBUGTRC"
RAMLOAD = #" RAMLOAD=- aRAMLOAD"
MAKERS = rom_common. make \

romserial . make \

rom port. make \

rom i mage. make \

rom.initext.mke
MAKEOPTS = $(RBUG $(CBUG $(TDIR) \

$(TARGET) $(ROVDBG) $(MBUGTRC) $(RAMLOAD)

MAKER = ./ronbug. neke # this file
I NI TEXT = $(OBIDIR)/initext
RBGSTB = #$(OBJDI R)/ STB/ ronbug. stb
FI LES = $(OBJDIR)/ronbug $(I NI TEXT) $(RBGSTB)
OFI LE = $(O0BJDI R)/ rombugger
MAKE = nake # make utility
CFP = cfp # command file processor
CFPOPTS = "-s=$(MAKE) -f=* $(MAKEOPTS)"
MERGE = merge
REDI R = >-
CHD = chd
DEL = del
ALLFI LES = *

TOUCH = touch

Example ROM Source and Makefiles M MICROWARE"

- X
ronbug. date: $(MAKER)

$(CFP) $(CFPOPTS) $(MAKERS)
$(MERGE) $(FILES) $(REDI R)$(OFI LE)

cl ean: $(MAKER)
$(CHD) $(RELSDI R); $(DEL) $(ALLFILES)

end of file

304 0S-9 for 68K Processors OEM Installation Manual

rom.make

Makefile for OEM exanple ROM wi t hout ROVBUG

-b

TYPE = NOBUG

RELSDI R = RELS/ $(TYPE)

OBJDI R = CMDS/ BOOTOBJS/ $(TYPE)

ROM custom zation fl ags

RBUG = "RBUG="

CBUG = " CBUG=- dNOBUG'
TDIR = "TYPE=$(TYPE)"
TARGET = "TARGET=r ont
ROVDBG = "ROVDBG="

Testing options

MBUGTRC = #" MBUGTRC=- aMBUGTRC"
RAMLOAD = #" RAMLOAD=- aRAMLOAD"
MAKERS = rom_common. make \

romserial . make \

rom port. make \

rom i mage. make \

rom.initext.mke
MAKEOPTS = $(RBUG) $(CBUG $(TDR) \

$(TARGET) $(ROVDBG) $(MBUGTRC) $(RAMLOAD)

MAKER = ./rom neke # this file
I NI TEXT = $(OBIDIR)/initext
RBGSTB = #$(OBJDI R)/ STB/rom stb
FI LES = $(OBIDIR)/rom $(1 NI TEXT) $(RBGSTB)
OFI LE = $(O0BIDI R)/romer
MAKE = nake # make utility
CFP = cfp # command file processor
CFPOPTS = "-s=$(MAKE) -f=* $(MAKEOPTS)"
MERGE = merge
REDI R = >-
CHD = chd
DEL = del
ALLFI LES = *

TOUCH = touch

Example ROM Source and Makefiles M MICROWARE"

- X
romdate: $(MAKER)
$(CFP) $(CFPOPTS) $(MAKERS)
$(MERGE) $(FILES) $(REDIR)$(OFILE)

cl ean: $(MAKER)
$(CHD) $(RELSDI R); $(DEL) $(ALLFILES)

end of file

306 0S-9 for 68K Processors OEM Installation Manual

rom_common.make

Makefile for the commpn boot nodul es in the CEM exanpl e ROM

ROCT =../..].. # base of dir system

BASEROOT = $(ROOT)/ 68000 # dir systemfor LIB, etc

CPURCOT = $(ROOT)/ 68000 # dir system for output

SRCROOT = $(ROOT)/SRC # dir systemfor source

SDIR = $(SRCROOT) / ROM COWON# speci fic source dir

TYPE = ROMBUG

RDI R = RELS/ $(TYPE)

RDUP =../..

LI BROOT = $(RD R

SYSDEFS = $(SRCROOT) / DEFS# std OS defs

TWVPDI R = /dd

MAKER = rom_conmmon. meke

SYSBOOT = #syshoot.r # use sysboot.a instead of CBOOT
OBJECTS = vectors.r boot.r $(SYSBOOT)

Ll B = rom_conmon. |

COVDEFS = $(SYSDEFS)/ oskdefs. d

DEFS = systype.d $(COVDEFS)

RBUG = - aROVBUG

MBUGTRC = #-aMBUGIRC # enabl es MBUG tracing and breakpoints for testing
RAMLOAD = #-aRAMLOAD # support ronmbug |oad directly for porting

SPEC_RFLAGS= $(MBUGTRC) $(RAMLOAD) #- aFASTCONS

- mode=conpat

RC = re68

SRCHDI RS = -u=. -u=$(SYSDEFS)

RFLAGS = -qg $(RBUG -aCBOOT $(SPEC RFLAGS) $(SRCHDI RS)
TOUCH = touch

CHD = chd

MERGE = merge

REDI R = >

-X

rom conmon. date : $(LIBROOT)/ $(CLI B)
$(TOUCH) $@

$(LIBROOT)/ $(OLIB) : $(OBIECTS)

F Example ROM Source and Makefiles Aﬂ MICROWARE"

$(CHD) $(RDIR); $(MERGE) $(OBJECTS) $(REDI R) $(RDUP)/ $@

$(OBIECTS) : $(DEFS) $(MAKER)

308 0S-9 for 68K Processors OEM Installation Manual

rom_serial.make

Makefile for the I/Odriver in the CEM exanpl e ROM

ROCT =../..].. # base of dir system

BASEROOT = $(ROOT)/ 68000 # dir systemfor LIB, etc

CPURCOT = $(ROOT)/ 68000 # dir system for output

SRCROOT = $(ROOT)/SRC # dir systemfor source

SDIR = $(SRCROOT) / ROM SERI AL# specific source dir

TYPE = ROMBUG

RDI R = RELS/ $(TYPE)

RDUP = ...

LI BROOT = $(RD R

SYSDEFS = $(SRCROOT) / DEFS# std OS defs

SYSMACS = $(SRCROOT) / MACRCS

TMPDI R = /dd

MAKER = rom seri al . mke

OBJECTS = i0z8530.r

Ll B = romserial.l

COVDEFS = $(SYSDEFS)/ oskdefs. d

DEFS = systype.d $(COVDEFS)

RBUG = - aROVBUG

MBUGTRC = #-aMBUGIRC # enabl es MBUG tracing and breakpoints for testing
RAMLOAD = #-aRAMLOAD # support ronmbug |oad directly for porting

SPEC_RFLAGS= $(MBUGTRC) $(RAMLOAD) #- aFASTCONS

- mode=conpat

RC = re68

SRCHDI RS = -u=. -u=$(SYSDEFS) -u=$(SYSMACS)

RFLAGS = -qg $(RBUG -aCBOOT $(SPEC RFLAGS) $(SRCHDI RS)
TOUCH = touch

CHD = chd

MERGE = merge

REDI R = >

-X

romserial.date : $(LIBROOT)/$(CLIB)
$(TOUCH) $@

$(LIBROOT)/ $(OLIB) : $(OBIECTS)

F Example ROM Source and Makefiles Aﬂ MICROWARE"

$(CHD) $(RDIR); $(MERGE) $(OBJECTS) $(REDI R) $(RDUP)/ $@

$(OBIECTS) : $(DEFS) $(MAKER)

310 0S-9 for 68K Processors OEM Installation Manual

rom_port.make

Makefile for port nodules in the OEM exanpl e ROM

ROCT =../..].. # base of dir system
BASEROOT = $(ROOT)/ 68000 # dir systemfor LIB, etc
CPURCOT = $(ROOT)/ 68000 # dir system for output
SRCROOT = $(ROOT)/SRC # dir systemfor source
SDIR =, # specific source dir
TYPE = ROVBUG

RDI R = RELS/ $(TYPE)

RDUP =../..

LI BROOT = $(RD R

BOOTDEFS = $(SRCROOT) / ROM CBOOT/ DEFS

SCS| DEFS = $(SRCROOT) /| O SCsSI / DEFS

SYSDEFS = $(SRCROOT) / DEFS# std OS defs

SYSMACS = $(SRCROOT) / MACRCS

CDEFS = $(ROOT)/ ../ SRC/ DEFS# std C defs

TMPDI R = /dd

MAKER = rom port. nake

SYSINIT = sysinit.r

SYSCON = bootio.r syscon.r

OBJECTS = $(SYSINIT) $(SYSCON)

Ll B = romport.|

COVDEFS = $(SYSDEFS)/ oskdefs. d

DEFS = systype.d $(COVDEFS)

RBUG = - aROMBUG

MBUGTRC = #-aMBUGIRC # enabl es MBUG tracing and breakpoints for testing
RAMLOAD = #-aRAMLOAD # support ronmbug |oad directly for porting

SPEC_RFLAGS= $(MBUGTRC) $(RAMLOAD) #- aFASTCONS
CBUG = #- ANOBUG
SPEC_CFLAGS= $(CBUG)

- mode=conpat

cC = cc

CSRCHDI RS = -v=. -v=$(BOOTDEFS) -v=$(SCSIDEFS) -v=$(SYSDEFS) -v=$(CDEFS)
CFLAGS = -gst=$(TMPDIR) -O=0 -dCBOOT $(SPEC_CFLAGS) $(CSRCHDI RS)

RC = re68

RSRCHDI RS = -u=. -u=$(SYSDEFS) - u=$(SYSMACS)

/5?\ MICROWARE"

RFLAGS = -q $(RBUG -aCBOOT $(SPEC RFLAGS) $(RSRCHDI RS)
TOUCH = touch

CHD = chd

VERGE = nerge

REDI R = >

-X

romport.date : $(LIBROOT)/$(COLIB)
$(TOUCH) $@

$(LI BROOT)/ $(OLI B) : $(OBJECTS)
$(CHD) $(RDIR); $(MERGE) $(OBJECTS) $(REDI R) $(RDUP)/$@

$(SYSINIT) : $(DEFS) $(MAKER)

$(SYSCON) : $(MAKER)

rom_image.make

Makefile for linked rominmage in the OEM exanpl e ROM

-b
ROCT = ... # base of dir system
BASEROOT = $(ROOT)/ 68000 # dir systemfor LIB, etc
CPUROQOT = $(ROOT)/ 68000 # dir system for output
SRCROOT = $(ROOT)/SRC # dir systemfor source
BOOTROOT = $(SRCROOT)/ ROM LI B
SYSROOT = $(BASEROOT)/ LI B
TYPE = ROVBUG
RDI R = RELS/ $(TYPE)
RDUP =../..
LI BROOT = $(RDIR)
TMPDI R = /dd
MAKER = rom.i mage. nake
DI R = CMDS/ BOOTOBJIS/ $(TYPE)
TARGET = ronbug
ROVDBG = $(BOOTROOT) / r onbug. |
ROM O = $(BOOTROOT)/ roni o. |
FI LES = $(LIBROOT)/rom comon. | \
$(LI BROOT)/rom port.| \
$(LIBROOT)/romserial.l \
$(ROVDBG) $(ROM O)
cLIB = $(SYSROOT)/clib. |
LCLI B = -1=$(CLI B)
SYS CLIB = $(SYSROOT)/sys_clib. |
LSYS CLIB = -1=$(SYS_CLIB)
M.I B = $(SYSROOT)/os_lih. |
LM.I B = -1 =$(MI B)
SYSL = $(SYSROOT)/ sys. |
LSYSL = -1 =$(SYSL)
SYSBOOT = $(BOOTROOT) / sysboot . |
LSYSBOOT = -1 =$(SYSBOOT)
CACHEFL = $(BOOTROOT) / f | ushcache. |
LCACHEFL = -1 =$(CACHEFL)
LI BS = $(LSYSBOOT) $(LCACHEFL) \

$(LCLIB) $(LSYS CLIB) $(LM.IB) $(LSYSL)

/5?\ MICROWARE"

LI BDEPS = $(SYSBOOT) $(CACHEFL) \
$(CLIB) $(SYS_CLIB) $(M.IB) $(SYSL)

- rode=conpat

LC = |68

LFLAGS = -r=FF800000 -swam - M3k -g -b=4
TOUCH = touch

CHD = chd

MVERGE = nerge

REDI R = >

-X

rom.image.date : $(ODl R)/$(TARGET)
$(TOUCH) $@

$(ODI R)/ $(TARGET) : $(FILES) $(LI BDEPS) $(MAKER)
$(LC) $(LFLAGS) $(FILES) $(LIBS) -0=$@ $(REDI R) $@ nap

bootio.c

*/

Copyright 1993 by M croware Systens Corporation
Reproduced Under License

This source code is the proprietary confidential property of

M croware Systens Corporation, and is provided to |icensee
solely for documentation and educati onal purposes. Reproduction,
publication, or distribution in any formto any party other than
the licensee is strictly prohibited.

#i ncl ude <sysboot . h>

/*

my favorite |loop function */

#define LOOPfor(;;)

/*

utility routines */

#define ESC Ox1b

#def i ne CR 0x0d
#define TAB 0x09
#def i ne BS 0x08
#def i ne BEL 0x07

char getinchar ()

{

}

char inchar;

inchar = I nChar();

if ((inchar>="A") && (inchar <='27"))
inchar | = CASEBIT,;

return(inchar);

int outhex(h)
u_int32 h;

{

u_int32 t, 1=0;
char d;

Qut Char (' 0");

Qut Char (" x');

if (th) {
Qut Char (' 0");
return(l);

}

for (t=0x10000000; t>=1; t/=0x10)
if (h >=1) break;/* skip |eading zeros */

/5?\ MICROWARE"

for (; t>=1; t/=0x10) {

d=nh/t;
if (d<=09)
Qut Char(d + '0");
el se
QutChar(d - 10 + "a’);
| ++;
h=h-d*t;
return(l);
}
int outint(i)
u_int32 i;
{
u_int32 t, 1=0;
if (i) {
Qut Char (' 0");
return(l);
}

for (t=1000000000; t>=1; t/=10)
if (i >>1t) break;/* skip |leading zeros */

for (; t>=1; t/=10) {
QutChar((i / t) | 0x30);

=0 - (i1l t) *t;
| ++;
}
return(l);
}
voi d outsone(s)
u_char *s;
{
if (1(*s))
outstr("<none>");
el se
outstr(s);
}
voi d outerase(n)
u_int32 n;
{
int i
Qut Char (" ");
Qut Char (BS) ;
for (i=n-1; i>0; i--) {
Qut Char (BS) ;
Qut Char (");

Qut Char (BS) ;

}

u_char ask_ynq(quit)
u_int32 quit;
{

char inchar, newal, newprnpt, val spec;
u_int32n;

val spec = FALSE;
newpr npt = TRUE;

LOOP {
if (newprmpt) {
outstr("\n\(<yes>/ <no>");
if (quit)
outstr("/<quit>");
outstr("\)? ");
if (val spec){

if (newal == 'y’)outstr("yes");
else if (newal == "'n’)outstr("no");
el se outstr("quit");

}
newpr npt = FALSE;
}

inchar = getinchar();

if (inchar == CR) {
if (!valspec) {
newpr npt = TRUE;
Qut Char (BEL) ;
conti nue;

}

br eak;

if (inchar == BS) {
if (!valspec) {
newpr npt = TRUE;
Qut Char (BEL) ;

conti nue;
}
if (newal =="'y’)n = 3;
else if (newal == "'n")n = 2;
el se n = 4;

out erase(n);
val spec = FALSE;
conti nue;

if (!valspec) {
newal = inchar;
if (inchar == "y') {
outstr("es");
val spec = TRUE;
conti nue;

/5?\ MICROWARE"

if (inchar =="n") {
Qut Char (' 0");
val spec = TRUE;
conti nue;
}
if (quit & (inchar =="q")) {

outstr("uit");
val spec = TRUE;
conti nue;
}
}
newpr npt = TRUE;
Qut Char (BEL) ;
}
return(newal);

}

/* Dummy entry points to satisfy Iinker
* until this is put into sysboot.| */

voi d checknvran() {}
voi d out endi s() {}

error_code rc_btlist() {}
error_code rc_endis() {}
error_code rc_int() {}
error_code rc_vneints(){}
error_code reconfig() {}

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

Index

Numerics
68000 22, 78, 162, 164, 167
emulation system 11
68008 78, 167
68010 78, 167, 266
68020 22, 78, 167, 266
68030 78, 167
68040 78, 167
68070 78, 167
68349 167
CIC bank flags 174
683XX processor naming conventions 64
68681
serial device 241

Adaptec ACB4000 Disk Controller 262
add devices
example 263
address translation and DMA transfers 181

baud rate 14
BERR 162
binboot.c 196
binex 11
boot
kernel 70
stages 111
boot code 37
finishing 44

ABCDEFGHIJKLMNOPQRSTUVWXY Z

initial function 48

porting 43
boot driver
initialize 214

boot drivers

considerations 156
boot file

large 160
boot files 51
boot.a 39, 40, 43, 51, 70-78
bootfile 37

add SSM 272

allocate memory for 209
bootio.c 43, 52
bootstrap driver

support 160
bootstrap drivers 190
breakpoints 112
btf.m 23
bus errors 162

C
cache
coherency 179
control 164

custom configuration 172
DMA support 179
external 175
inhibited not-serialized access 170
inhibited, serialized access 170
peripheral access timing violations 176
timing loops 177

caching mode 170

CallDBug 96

calldebug() 205

Can'’t allocate table 237

Can’'t open console terminal 238

Can’'t open default device 238

CBOOT 28, 61, 158
drivers entry points 199, 203

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

overview 194
ClkLevel 130
ClkPort 129
ClkPrior 129
ClkVect 129
clock
tests 150
clock module
debugging 133
generic 129
clock modules 7?72-131
generic 126
real-time support 128
select tick interrupt device 122
tick timer setup 123
ClockNm 105, 123
cold2() 117-118
coldstart errors 239
coldstart() 114, 115-116
comm port 80
deinitialize 92
read character from 88
set up and initialize 92, 93
Comm_Adr 65
CommType 65
CONFIG macro 104
Cons_Addr 64

ConsDeln 83
Conslnit 39, 84
console

device driver 109

I/O driver 108
console device

read string from 217
console output device

send stringto 227
console port 80

check 87

deinitialize 83

initialize 84

output character to 93

ABCDEFGHIJKLMNOPQRSTUVWXY Z

ConsolNm 105
ConsType 64
copy back 169
CPU32 22
CPUTyp 62

D_SnoopD 180
DD BSzZ 159, 161
DD BT 159, 161
deblocking drivers 187
debug files 53
define memory 65
DEFS 20
defsfile 55
development environment 10
Direct Memory Access (DMA) 179
address translation 181
disk driver
boot routines 139
test 137
disk 1/10
tests 149
diskboot.c 195
distribution package 19
download
0S-9 111
prepare file 109
driver flags 247
DriverName 107
drivers
deblocking 187

embedded

MMU 266
entry points 94
error codes 239

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

Exbin 11

exception service routine
install 229

Extens 41, 105

external caches 175

F$Trans 181
FD Vct 65
FDsk Vct 65
file name
suffixes 16
floppy disk
suggested format 158
flow control 14
Fujitsu 2333 hard disk 259

gb command 244
generic clock modules 126, 129
getbootmethod() 97
growth method 70

hardware
disable 202
initialize 200
high-level drivers 260
host
defined 10
interconnection with target 14
requirements 10-11
host CPU 259

A B CDEFGHI

JKLMNOPQRSTUVWXY Z

1/O
drivers

entry points 80

subroutines
InChar 86
InChar() 212
INChChek 87

INChChek() 213

init() 200
initdata.c 195
initext.a 98
InPort 88
input port

79

read character from 86

Insert() 230

INSTBERR 162

instr() 217

instruction cache 178

interrupts
mask 221
Inttoascii() 219
IO 20
lo.xxx 79
lo.yyy 79
i02661.a 248
i06850.a 249
i068560.a 250
i068562.a 251
i068564.a 252
i068681.a 253
i068901.a 255
IOMAN 20
loxxx.a 43
ioxxx.a 52
loyyy.a 43
ioyyy.a 52
i0z8530.a 256
IRQLevel 106

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

KERNEL 20

kernel
coldstart routine 114
porting 44
tests 147

label definitions
example 59
[dbra.m 23
LIB 20
logical sector size 158
low level I/O driver flags 247

M$Compat2 172, 173, 179
MACROS 21
macros 23
MainFram 104
make utility 15
makefile
defined 15
makelower() 220
MAKETMPL 22
MANUAL_RAM 62
mask_irq() 221
MC68451
and SSM 268
Mem.Beg 66
Mem.End 66
MembDefs 65, 72, 75
example 66
memory management units (MMU) 266
memory map information 57
memory search 75
misc.c 196

ABCDEFGHIJKLMNOPQRSTUVWXY Z

Motorola 68451 266
Motorola 68851 266
MPUType 71

MVME147 259, 262
MVME147 CPU 260

MWOS directory structure 19

NoClock 132
non-contiguous boot file 160

OMTI5400 258
Controller 259
0S-9
cache control 164
download 111
soft bus errors 162
OS-9 driver 258
OS9Boot 139, 143
0s9gen 139, 159
OS9P2 modules 105
0os9svc.m 23
oskdefs.d 56
OutChar 93
OutChar() 222
OutHex() 223
OutPort 92
outstr() 227

PARITY 61

patch locations 78
PD_SSize 184
physical sector size 157
Port 106

port

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

comm 80

console 80
PortDeln 92
porting

boot code 43

kernel 44
Portlnit 93
Priority 106
problem resolution 99, 234
PROM

emulators 12

RAM memory
define normal search area 76
RAMVects 61, 69, 71
RB2333 260
RB5400 260
RBF
media conversion 188
support for variable sector sizes 183
reach32.m 24
real-time clock device 125
real-time clock support 128
register conventions
before entering the kernel 74
when jumping to SysBoot 73
relocation register
ROMbug 112
requirements
target 12
ROM 21
configuration values 58
debuggers 48
global data space 76
ROM debugger prompt
power up 38
rom.make 51
rom_common.| 51
ROM-based system 134

ABCDEFGHIJKLMNOPQRSTUVWXY Z

ROM-based target system 121
romboot.c 196
ROMBUG 61
ROMBug 244
ROMbug 12
caching 175
RomBug 40, 71
rombug.make 50
rompak.m 24
ROMPAK2 95
RTCBase 130

S
SB5400 260
SCF
device descriptor macro definitions 106
SCSI
bus 261
SCSI147 260

SCSI-system drivers 258
sector size 156
serial I/0O

tests 148
serial port

parity code 106
setexcpt() 229
SinitTwo

functions 95
snoopy/absent flags 174
soft bus errors 162
Spc.Beg 66
Spc.End 66
special memory 77, 111
SRC 22
s-records

defined 11
SS VarSect 184
SSM

structure 277
SSM040 267

A BCDEFGHIJIKLMNOPQRSTUVWXYZ

stale data 179
SYS 21
SysBoot 40, 73
sysboot.c 197
sysboot.m 24
sysboot_glue.c 197
SysCache 165

default modules 167
syscom.c 43
syscon.c 52
SysDev 104
SysDisk 65
sysglob.m 23
Syslnit 39, 70

functions 94
Sysinit 98
sysinit.a 39, 43, 49, 52, 94-96, 97-??
Syslnit2 72
SYSMODS 21
SysParam 104
SysStart 104
system

memory list

return memory to 216

system global 76
system globals 41
system level debugger

start 205
System Security Module (SSM) 265
systype.d 43, 49, 51, 55, 57-??, 129

—
tapeboot.c 197
target

defined 10

interconnection with host 14
requirements 12
target-specific labels 58
temporary instruction sequences 178
term() 202

ABCDEFGHIJKLMNOPQRSTUVWXY Z

test
boot code 50
CBoot disk boot module 141
disk driver 137
disk /0 149
kernel 147
serial /O 148
tick
interrupt device 122
tick timer
activation 124
OS-9 setup 123
tickgeneric.a 126
TicksSec 129
timing loops 177
TransFact 78
TRANSLATE 62

UseDebug 39, 71
functions 95

variable sector size
RBF support 183
variable sector size support
advantages of 189
convert existing drivers 186
VBRBase 62
VBRPatch 78
Vector 106
vectors.a 43, 51, 69-92
VMEG620 SCSI controller 261

write-through 169

Product Discrepancy Report

To: Microware Customer Support
FAX: 515-224-1352
From:

Company:

Phone:

Fax: Email:

Product Name:
Description of Problem:

Host Platform

Target Platform

M MICROWARE"

	HOME
	OS-9® for 68K Processors OEM Installation Manual
	Chapter 1: Getting Started
	Developing a Plan
	The Host System Hardware
	The Host System Software
	The Target System Hardware
	Pre-Porting Steps

	The Make Utility
	Common File Name Suffixes
	Checking the Contents of the Distribution
	Structure of the Distribution Package on the Host System
	MWOS/OS9/SRC Directory Structure
	MWOS/OS9 Directory Structure

	OS-9 Macro Routines
	MWOS/OS9/SRC/IO Directory Structure
	MWOS/OS9/SRC/ROM Directory Structure

	Additional Reference Materials

	Chapter 2: Porting OS-9 for 68K
	Getting Started
	Understanding the OS-9 for 68K Booting Process
	Step 1: Power Up the ROMbug Prompt
	Step 2: ROMbug Prompt to Kernel Entry
	Step 3: Kernel Entry Point to $ Prompt

	The Four Porting Steps

	Chapter 3: Step One: Porting the Boot Code
	Introduction
	About the Boot Code
	How to Begin the Port: The Boot Code
	Testing the Boot Code
	ROM Image Versions
	Component Files of the ROM Image

	The Defsfile File
	The Oskdefs.d File
	The Systype.d File
	The ROM Configuration Values
	Target Specific Labels
	Target Configuration Labels
	CPUTyp Label and Supported Processors

	Low Level Device Configuration Labels
	Target System Memory Labels
	Example Memory Definitions

	The Vectors.a File
	The Boot.a File
	Steps Boot.a Goes Through to Boot the Kernel
	Memory Search Explanations
	The RAM Search
	The Special Memory Search
	The Patch Locations

	The ioxxx and ioyyy Files
	I/O Driver Entry Points
	ChekPort
	ConsDeIn
	ConsInit
	ConsSet
	InChar
	InChChek
	InPort
	OutChar
	OutPort
	OutRaw
	PortDeIn
	PortInit

	The Sysinit.a File
	The SysInit Entry Point
	The SInitTwo Entry Point
	The UseDebug Entry Point

	The Syscon.c File
	The iInitext.a File
	Putting the ROM Together

	Chapter 4: Step Two: Bringing Up the Kernel and Console I/O
	Preparing the First Stage OS-9 Configuration
	Creating the Init Module
	SCF Device Descriptor Macro Definitions

	Creating a Console I/O Driver
	Preparing the Download File
	Downloading and Running the System
	Downloading and Running the System

	Cold Part of Kernel
	The coldstart() Routine
	Cold2(): Bringing Up the System the Rest of the Way

	Debugging Hints

	Chapter 5: Step Three: Creating Customized I/O Drivers and Finishing the Boot Code
	Guidelines for Selecting a Tick Interrupt Device
	OS-9 Tick Timer Setup
	Tick Timer Activation
	Real-Time Clock Device Support
	Microware Generic Clock Modules
	Tickgeneric Support
	Ticker Support
	Real-Time Clock Support

	Using Generic Clock Modules
	Philosophy of Generic Clock Modules

	Automatic System Clock Startup
	Debugging Clock Modules on a Disk-Based System
	Debugging Clock Modules on a ROM-Based System

	Creating Disk Drivers
	Testing the Disk Driver

	Creating and Testing the Disk Boot Routines
	Testing the CBoot Disk Boot Module
	Further Considerations

	Completing the System

	Chapter 6: Step Four: Testing and Validation
	General Comments Regarding Testing
	Kernel Tests
	Serial I/O (SCF) Tests
	Disk I/O (RBF) Tests
	Clock Tests
	Final Tests
	System Configuration Checkout
	A Final Note

	Chapter 7: Miscellaneous Application Concerns
	Disk Booting Considerations
	Boot Drivers Supporting Variable Sector Size
	Bootstrap File Specifications
	Making Boot Files
	Bootstrap Driver Support

	Soft Bus Errors Under OS-9

	Chapter 8: OS-9 Cache Control
	OS-9 Cache Control
	System Implementation
	Install Cache Operations

	Default SysCache Modules
	Caching Tables
	Custom Configuration for External Caches
	M$Compat2 Bit Fields

	ROM Debugger and Caches
	Peripheral Access Timing Violations
	Timing Loops

	Building Instructions in the Data Space
	Data Caching and DMA
	Indication of Cache Coherency

	Address Translation and DMA Transfers

	Chapter 9: RBF Variable Sector Support
	RBF Device Drivers
	Converting Existing Drivers to Use Variable Sector Size
	RBF Media Conversion
	Benefits of Non-256 Byte Logical Sectors
	Bootstrap Drivers
	RBF Disk Utilities

	Appendix A: The CBoot Technology
	Introduction
	The CBOOT Common Booters
	CBOOT Driver Entry Points
	init()
	read()
	term()

	CBOOT Library Entry Points
	calldebug()
	convhex()
	extract()
	getbootmem()
	gethexaddr()
	hwprobe()
	InChar()
	InChChek()
	iniz_boot_driver()
	insert()
	instr()
	inttoascii()
	makelower()
	mask_irq()
	OutChar()
	OutHex()
	Out1Hex()
	Out2Hex()
	Out4Hex()
	outstr()
	powerof2()
	setexcpt()
	streq()
	sysreset()

	Appendix B: Trouble Shooting
	Introduction
	Step 1: Porting the Boot Code
	Step 2: Porting the OS�9 for 68K Kernel and Basic I/O
	Coldstart Errors for the Atomic Versions of the Kernel and IOMan

	Setting Up the DevCon Descriptor Field for the Sc68681 Serial Driver
	Searching the Module Directory

	Appendix C: Low-level Driver Flags
	Flags for io2661.a
	Flags for io6850.a
	Flags for io68560.a
	Flags for io68562.a
	Flags for io68564.a
	Flags for io68681.a
	Flags for io68901.a
	Flags for ioz8530.a

	Appendix D: SCSI-System Notes
	OS-9 for 68K SCSI-System Drivers
	Hardware Configuration
	Example One
	OMTI5400 Controller
	Fujitsu 2333 Hard Disk with Embedded SCSI Controller
	Host CPU: MVME147
	Software Configuration
	Example Two
	Example Three

	Appendix E: Using the OS-9 for 68K System Security Module
	Memory Management Units
	Hardware/Software Requirements
	Versions of SSM040

	Configuring SSM for MC68451 Systems
	Adding SSM to the OS-9 Bootfile
	Step One: Create a New Init Module
	Step Two: Create a New Bootfile
	Step Three: Test SSM Operation

	Creating a System Security Module
	SSM Module Structure
	Hardware Considerations
	Complete Source Listing
	Customized 68020 protection module

	Appendix F: Example ROM Source and Makefiles
	defsfile
	systype.d
	sysinit.a
	syscon.c
	rombug.make
	rom.make
	rom_common.make
	rom_serial.make
	rom_port.make
	rom_image.make
	bootio.c

	Index
	Product Discrepancy Report

